A method for analyzing the stability of the resting state for a model of pacemaker cells surrounded by stable cells

  • Received: 01 April 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : 92B05, 35R05.

  • The purpose of this paper is to derive and analyze methods for examining the stability of solutions of partial differential equations modeling collections of excitable cells. In particular, we derive methods for estimating the principal eigenvalue of a linearized version of the Luo-Rudy I model close to an equilibrium solution. It has been suggested that the stability of a collection of unstable cells surrounded by a large collection of stable cells can be studied by considering only a collection of unstable cells equipped with a Dirichlet type boundary condition. This method has earlier been applied to analytically assess the stability of a reduced version the Luo-Rudy I model. In this paper we analyze the accuracy of this technique and apply it to the full Luo-Rudy I model. Furthermore, we extend the method to provide analytical results for the FitzHugh-Nagumo model in the case where a collection of unstable cells is surrounded by a collection of stable cells. All our analytical findings are complemented by numerical computations computing the principal eigenvalue of a discrete version of linearized models.

    Citation: Robert Artebrant, Aslak Tveito, Glenn T. Lines. A method for analyzing the stability of the resting state for a model ofpacemaker cells surrounded by stable cells[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 505-526. doi: 10.3934/mbe.2010.7.505

    Related Papers:

  • The purpose of this paper is to derive and analyze methods for examining the stability of solutions of partial differential equations modeling collections of excitable cells. In particular, we derive methods for estimating the principal eigenvalue of a linearized version of the Luo-Rudy I model close to an equilibrium solution. It has been suggested that the stability of a collection of unstable cells surrounded by a large collection of stable cells can be studied by considering only a collection of unstable cells equipped with a Dirichlet type boundary condition. This method has earlier been applied to analytically assess the stability of a reduced version the Luo-Rudy I model. In this paper we analyze the accuracy of this technique and apply it to the full Luo-Rudy I model. Furthermore, we extend the method to provide analytical results for the FitzHugh-Nagumo model in the case where a collection of unstable cells is surrounded by a collection of stable cells. All our analytical findings are complemented by numerical computations computing the principal eigenvalue of a discrete version of linearized models.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1792) PDF downloads(473) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog