Evolution of dispersal and the ideal free distribution

  • Received: 01 April 2009 Accepted: 29 June 2018 Published: 01 January 2010
  • MSC : Primary: 35K57, 92D25.

  • A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.

    Citation: Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution[J]. Mathematical Biosciences and Engineering, 2010, 7(1): 17-36. doi: 10.3934/mbe.2010.7.17

    Related Papers:

  • A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2285) PDF downloads(771) Cited by(95)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog