A mathematical model of weight change with adaptation

  • Received: 01 November 2008 Accepted: 29 June 2018 Published: 01 September 2009
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • As obesity and its related health problems grow around the world, efforts to control and manage weight is increasing in importance. It is well known that altering and maintaining weight is problematic and this has led to specific studies trying to determine the cause of the difficulty. Recent research has identified that the body reacts to forced weight change by adapting individual total energy expenditure. Key factors are an adaptation of resting metabolic rate, non-exercise activity thermogenesis and dietary induced thermogenesis. We develop a differential equation model based on the first law of thermodynamics that incorporates all three adjustments along with natural age related reduction of the resting metabolic rate. Forward time simulations of the model compare well with mean data in both overfeeding and calorie restriction studies.

    Citation: Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation[J]. Mathematical Biosciences and Engineering, 2009, 6(4): 873-887. doi: 10.3934/mbe.2009.6.873

    Related Papers:

  • As obesity and its related health problems grow around the world, efforts to control and manage weight is increasing in importance. It is well known that altering and maintaining weight is problematic and this has led to specific studies trying to determine the cause of the difficulty. Recent research has identified that the body reacts to forced weight change by adapting individual total energy expenditure. Key factors are an adaptation of resting metabolic rate, non-exercise activity thermogenesis and dietary induced thermogenesis. We develop a differential equation model based on the first law of thermodynamics that incorporates all three adjustments along with natural age related reduction of the resting metabolic rate. Forward time simulations of the model compare well with mean data in both overfeeding and calorie restriction studies.


    加载中
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3094) PDF downloads(832) Cited by(53)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog