Citation: Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 573-583. doi: 10.3934/mbe.2009.6.573
1. | Konstantin E. Starkov, Luis N. Coria, Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy, 2013, 14, 14681218, 1425, 10.1016/j.nonrwa.2012.10.006 | |
2. | Alberto d’Onofrio, 2013, Chapter 7, 978-1-4614-1444-5, 111, 10.1007/978-1-4614-1445-2_7 | |
3. | N. S. Ravindran, M. Mohamed Sheriff, P. Krishnapriya, Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, 2017, 11, 1751-3758, 480, 10.1080/17513758.2017.1381280 | |
4. | Zvia Agur, Moran Elishmereni, Urszula Foryś, Yuri Kogan, Accelerating the Development of Personalized Cancer Immunotherapy by Integrating Molecular Patients’ Profiles with Dynamic Mathematical Models, 2020, 108, 0009-9236, 515, 10.1002/cpt.1942 | |
5. | Alexei Tsygvintsev, Simeone Marino, Denise E. Kirschner, 2013, Chapter 13, 978-1-4614-4177-9, 367, 10.1007/978-1-4614-4178-6_13 | |
6. | Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 2, 978-981-15-8639-2, 15, 10.1007/978-981-15-8640-8_2 | |
7. | Mitra Shojania Feizabadi, Tarynn M Witten, Modeling drug resistance in a conjoint normal-tumor setting, 2015, 12, 1742-4682, 10.1186/1742-4682-12-3 | |
8. | Liuyong Pang, Sanhong Liu, Xinan Zhang, Tianhai Tian, Mathematical modeling and dynamic analysis of anti-tumor immune response, 2020, 62, 1598-5865, 473, 10.1007/s12190-019-01292-9 | |
9. | Konstantin E. Starkov, Alexander P. Krishchenko, Ultimate dynamics of the Kirschner–Panetta model: Tumor eradication and related problems, 2017, 381, 03759601, 3409, 10.1016/j.physleta.2017.08.048 | |
10. | Alberto d’Onofrio, Francesca Gatti, Paola Cerrai, Luca Freschi, Delay-induced oscillatory dynamics of tumour–immune system interaction, 2010, 51, 08957177, 572, 10.1016/j.mcm.2009.11.005 | |
11. | F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim, M. A. Abdeen, Delay Differential Model for Tumour-Immune Response with Chemoimmunotherapy and Optimal Control, 2014, 2014, 1748-670X, 1, 10.1155/2014/982978 | |
12. | Sumana Ghosh, Sandip Banerjee, Mathematical modeling of cancer–immune system, considering the role of antibodies, 2018, 137, 1431-7613, 67, 10.1007/s12064-018-0261-x | |
13. | Konstantin E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, 2018, 382, 03759601, 387, 10.1016/j.physleta.2017.12.025 | |
14. | P. Krishnapriya, M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, 2017, 5, 2195-268X, 872, 10.1007/s40435-015-0221-y | |
15. | Andrea Minelli, Francesco Topputo, Franco Bernelli-Zazzera, Controlled Drug Delivery in Cancer Immunotherapy: Stability, Optimization, and Monte Carlo Analysis, 2011, 71, 0036-1399, 2229, 10.1137/100815190 | |
16. | Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, 2012, 9, 1551-0018, 347, 10.3934/mbe.2012.9.347 | |
17. | Shiferaw Feyissa, Sandip Banerjee, Delay-induced oscillatory dynamics in humoral mediated immune response with two time delays, 2013, 14, 14681218, 35, 10.1016/j.nonrwa.2012.05.001 | |
18. | Renee Brady, Heiko Enderling, Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to, 2019, 81, 0092-8240, 3722, 10.1007/s11538-019-00640-x | |
19. | Amine Hamdache, Smahane Saadi, A stochastic nominal control optimizing the adoptive immunotherapy for cancer using tumor-infiltrating lymphocytes, 2017, 5, 2195-268X, 783, 10.1007/s40435-016-0228-z | |
20. | F. Adi-Kusumo, L. Aryati, S. Risdayati, S. Norhidayah, Hopf Bifurcation on a Cancer Therapy Model by Oncolytic Virus Involving the Malignancy Effect and Therapeutic Efficacy, 2020, 2020, 0161-1712, 1, 10.1155/2020/4730715 | |
21. | Azadeh Aghaeeyan, Mohammad Javad Yazdanpanah, Jamshid Hadjati, A New Tumor-Immunotherapy Regimen based on Impulsive Control Strategy, 2020, 57, 17468094, 101763, 10.1016/j.bspc.2019.101763 | |
22. | F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, 2014, 232, 00963003, 606, 10.1016/j.amc.2014.01.111 | |
23. | Marc E. Songolo, Issa Ramadhani, Analysis of a mathematical model for cancer treatment by the nonstandard finite difference methods, 2017, 23, 1023-6198, 1222, 10.1080/10236198.2017.1318863 | |
24. | Giulio Caravagna, Alberto d’Onofrio, Paolo Milazzo, Roberto Barbuti, Tumour suppression by immune system through stochastic oscillations, 2010, 265, 00225193, 336, 10.1016/j.jtbi.2010.05.013 | |
25. | Murad Shibli, In Vivo Dynamic Image Characterization of Brain Tumor Growth Using Singular Value Decomposition and Eigenvalues, 2011, 04, 1937-6871, 187, 10.4236/jbise.2011.43026 | |
26. | KONSTANTIN E. STARKOV, ALEXANDER YU. POGROMSKY, ON THE GLOBAL DYNAMICS OF THE OWEN–SHERRATT MODEL DESCRIBING THE TUMOR–MACROPHAGE INTERACTIONS, 2013, 23, 0218-1274, 1350020, 10.1142/S021812741350020X | |
27. | Gord Fishell, Adam Kepecs, Interneuron Types as Attractors and Controllers, 2020, 43, 0147-006X, 1, 10.1146/annurev-neuro-070918-050421 | |
28. | Alexei Tsygvintsev, Sandip Banerjee, Bounded immune response in immunotherapy described by the deterministic delay Kirschner–Panetta model, 2014, 35, 08939659, 90, 10.1016/j.aml.2013.11.006 | |
29. | Konstantin E. Starkov, Alexander P. Krishchenko, On the global dynamics of one cancer tumour growth model, 2014, 19, 10075704, 1486, 10.1016/j.cnsns.2013.09.023 | |
30. | Amine Hamdache, Smahane Saadi, Ilias Elmouki, Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer, 2016, 4, 2195-268X, 346, 10.1007/s40435-015-0205-y | |
31. | Murad Al-Shibli, Generalized electro-biothermo-fluidic and dynamicalmodeling of cancer growth: state-feedback controlled cesium therapy approach, 2011, 04, 1937-6871, 569, 10.4236/jbise.2011.49073 | |
32. | Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi, Mathematical modeling on helper T cells in a tumor immune system, 2014, 19, 1553-524X, 55, 10.3934/dcdsb.2014.19.55 | |
33. | Florent Feudjio Kemwoue, Vandi Deli, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Jules Fossi Tagne, Jacques Atangana, Dynamics of cancerous tumors under the effect of delayed information: mathematical and electronic study, 2022, 2195-268X, 10.1007/s40435-022-01031-2 | |
34. | Abdulkareem Afolabi Ibrahim, Normah Maan, Khairunadwa Jemon, Afeez Abidemi, Global Stability and Thermal Optimal Control Strategies for Hyperthermia Treatment of Malignant Tumors, 2022, 10, 2227-7390, 2188, 10.3390/math10132188 | |
35. | Giulio Caravagna, Roberto Barbuti, Alberto d'Onofrio, Fine-tuning anti-tumor immunotherapies via stochastic simulations, 2012, 13, 1471-2105, 10.1186/1471-2105-13-S4-S8 | |
36. | Florent Feudjio Kemwoue, Vandi Deli, Hélène Carole Edima, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Mireille Mbou Dedzo, Jules Fossi Tagne, Jacques Atangana, Effects of delay in a biological environment subject to tumor dynamics, 2022, 158, 09600779, 112022, 10.1016/j.chaos.2022.112022 | |
37. | Sulasri Suddin, Fajar Adi-Kusumo, Lina Aryati, Sining Zheng, Reaction-Diffusion on a Spatial Mathematical Model of Cancer Immunotherapy with Effector Cells and IL-2 Compounds’ Interactions, 2021, 2021, 1687-9651, 1, 10.1155/2021/5535447 | |
38. | N. DARANDIS, M. NAZARI, A NEW MATHEMATICAL MODELING AND SUB-OPTIMAL CHEMOTHERAPY OF CANCER, 2021, 29, 0218-3390, 647, 10.1142/S0218339021500133 | |
39. | EYMARD HERNÁNDEZ-LÓPEZ, MAYRA NÚÑEZ-LÓPEZ, MARCOS A. CAPISTRÁN, STOCHASTIC DYNAMICS BETWEEN THE IMMUNE SYSTEM AND CANCER CELLS WITH ALLEE EFFECT AND IMMUNOTHERAPY, 2023, 31, 0218-3390, 1125, 10.1142/S0218339023500420 | |
40. | Md. Ahsan Ullah, Uzzwal Kumar Mallick, Waleed Adel, Mathematical Modeling and Analysis on the Effects of Surgery and Chemotherapy on Lung Cancer, 2023, 2023, 1687-0042, 1, 10.1155/2023/4201373 | |
41. | Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth, A phase-field model for non-small cell lung cancer under the effects of immunotherapy, 2023, 20, 1551-0018, 18670, 10.3934/mbe.2023828 | |
42. | Gladis Torres-Espino, Claudio Vidal, Dynamics aspects and bifurcations of a tumor-immune system interaction under stationary immunotherapy, 2024, 00255564, 109145, 10.1016/j.mbs.2024.109145 | |
43. | Aqeel Ahmad, Muhammad Owais Kulachi, Muhammad Farman, Moin-ud-Din Junjua, Muhammad Bilal Riaz, Sidra Riaz, Muntazir Hussain, Mathematical modeling and control of lung cancer with IL2 cytokine and anti-PD-L1 inhibitor effects for low immune individuals, 2024, 19, 1932-6203, e0299560, 10.1371/journal.pone.0299560 | |
44. | Kottakkaran Sooppy Nisar, Muhammad Owais Kulachi, Aqeel Ahmad, Muhammad Farman, Muhammad Saqib, Muhammad Umer Saleem, Fractional order cancer model infection in human with CD8+ T cells and anti-PD-L1 therapy: simulations and control strategy, 2024, 14, 2045-2322, 10.1038/s41598-024-66593-x | |
45. | Parvaiz Ahmad Naik, Muhammad Owais Kulachi, Aqeel Ahmad, Muhammad Farman, Faiza Iqbal, Muhammad Taimoor, Zhengxin Huang, Modeling different strategies towards control of lung cancer: leveraging early detection and anti-cancer cell measures, 2024, 1025-5842, 1, 10.1080/10255842.2024.2404540 | |
46. | Clara Burgos, Juan Carlos Cortés, Sergio. Díez-Domingo, Elena López-Navarro, Jose Villanueva-Tarazona, Rafael Jacinto Villanueva, A computational probabilistic procedure to quantify the time of breast cancer recurrence after chemotherapy administration, 2024, 188, 09600779, 115546, 10.1016/j.chaos.2024.115546 |