Quantifying uncertainty in the estimation of probability distributions

  • Received: 01 December 2007 Accepted: 29 June 2018 Published: 01 October 2008
  • MSC : 35L60,62E20,62F25,62G15,65M32,92D25

  • We consider ordinary least squares parameter estimation problems where the unknown parameters to be estimated are probability distributions. A computational framework for quantification of uncertainty (e.g., standard errors) associated with the estimated parameters is given and sample numerical findings are presented.

    Citation: H.T. Banks, Jimena L. Davis. Quantifying uncertainty in the estimation of probability distributions[J]. Mathematical Biosciences and Engineering, 2008, 5(4): 647-667. doi: 10.3934/mbe.2008.5.647

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell . Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
    [3] Celia Schacht, Annabel Meade, H.T. Banks, Heiko Enderling, Daniel Abate-Daga . Estimation of probability distributions of parameters using aggregate population data: analysis of a CAR T-cell cancer model. Mathematical Biosciences and Engineering, 2019, 16(6): 7299-7326. doi: 10.3934/mbe.2019365
    [4] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [5] Kamil Rajdl, Petr Lansky . Fano factor estimation. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105
    [6] H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim . Optimal design for dynamical modeling of pest populations. Mathematical Biosciences and Engineering, 2018, 15(4): 993-1010. doi: 10.3934/mbe.2018044
    [7] Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436
    [8] P. van den Driessche, Lin Wang, Xingfu Zou . Modeling diseases with latency and relapse. Mathematical Biosciences and Engineering, 2007, 4(2): 205-219. doi: 10.3934/mbe.2007.4.205
    [9] H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch . Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences and Engineering, 2014, 11(3): 427-448. doi: 10.3934/mbe.2014.11.427
    [10] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289
  • We consider ordinary least squares parameter estimation problems where the unknown parameters to be estimated are probability distributions. A computational framework for quantification of uncertainty (e.g., standard errors) associated with the estimated parameters is given and sample numerical findings are presented.


  • This article has been cited by:

    1. H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012
    2. H. T. Banks, Jimena L. Davis, Shuhua Hu, 2010, Chapter 2, 978-3-642-11277-5, 19, 10.1007/978-3-642-11278-2_2
    3. H T Banks, Jimena L Davis, Stacey L Ernstberger, Shuhua Hu, Elena Artimovich, Arun K Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, 2009, 25, 0266-5611, 095003, 10.1088/0266-5611/25/9/095003
    4. H. T. Banks, John E. Banks, Natalie G. Cody, Mark S. Hoddle, Annabel E. Meade, Population model for the decline of Homalodisca vitripennis (Hemiptera: Cicadellidae) over a ten-year period, 2019, 13, 1751-3758, 422, 10.1080/17513758.2019.1616839
    5. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    6. 2012, 978-1-4398-8083-8, 241, 10.1201/b12209-19
    7. E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6
    8. K. Wendelsdorf, G. Dean, Shuhua Hu, S. Nordone, H.T. Banks, Host immune responses that promote initial HIV spread, 2011, 289, 00225193, 17, 10.1016/j.jtbi.2011.08.012
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2680) PDF downloads(486) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog