A deterministic model of schistosomiasis with spatial structure

  • Received: 01 June 2007 Accepted: 29 June 2018 Published: 01 June 2008
  • MSC : Primary: 92D30, 92D40; Secondary: 93C15, 93C20.

  • It has been observed in several settings that schistosomiasis is less prevalent in segments of river with fast current than in those with slow current. Some believe that this can be attributed to flush-away of intermediate host snails. However, free-swimming parasite larvae are very active in searching for suitable hosts, which indicates that the flush-away of larvae may also be very important. In this paper, the authors establish a model with spatial structure that characterizes the density change of parasites following the flush-away of larvae. It is shown that the reproductive number, which is an indicator of prevalence of parasitism, is a decreasing function of the river current velocity. Moreover, numerical simulations suggest that the mean parasite load is low when the velocity of river current flow is sufficiently high.

    Citation: Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure[J]. Mathematical Biosciences and Engineering, 2008, 5(3): 505-522. doi: 10.3934/mbe.2008.5.505

    Related Papers:

  • It has been observed in several settings that schistosomiasis is less prevalent in segments of river with fast current than in those with slow current. Some believe that this can be attributed to flush-away of intermediate host snails. However, free-swimming parasite larvae are very active in searching for suitable hosts, which indicates that the flush-away of larvae may also be very important. In this paper, the authors establish a model with spatial structure that characterizes the density change of parasites following the flush-away of larvae. It is shown that the reproductive number, which is an indicator of prevalence of parasitism, is a decreasing function of the river current velocity. Moreover, numerical simulations suggest that the mean parasite load is low when the velocity of river current flow is sufficiently high.


    加载中
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1742) PDF downloads(452) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog