Modelling periodic oscillations during somitogenesis

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : Primary: 34C23, 34C25; Secondary: 92B20.

  • We consider a model of genetic network that has been previously presented by J. Lewis. This model takes the form of delay differential equations with two delays. We give conditions for the local stability of the non-trivial steady state. We investigate the condition underwhich stability is lost and oscillations occur. In particular, we show that when the ratio of the time delays passes a threshold, sustained oscillations occur through a Hopf bifurcation. Through numerical simulations, we further investigate the ways in which various parameters influence the period and the amplitude of the oscillations. In conclusion, we discuss the implications of our results.

    Citation: Peng Feng, Menaka Navaratna. Modelling periodic oscillations during somitogenesis[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 661-673. doi: 10.3934/mbe.2007.4.661

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell . Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
    [3] Celia Schacht, Annabel Meade, H.T. Banks, Heiko Enderling, Daniel Abate-Daga . Estimation of probability distributions of parameters using aggregate population data: analysis of a CAR T-cell cancer model. Mathematical Biosciences and Engineering, 2019, 16(6): 7299-7326. doi: 10.3934/mbe.2019365
    [4] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [5] Kamil Rajdl, Petr Lansky . Fano factor estimation. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105
    [6] H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim . Optimal design for dynamical modeling of pest populations. Mathematical Biosciences and Engineering, 2018, 15(4): 993-1010. doi: 10.3934/mbe.2018044
    [7] Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436
    [8] P. van den Driessche, Lin Wang, Xingfu Zou . Modeling diseases with latency and relapse. Mathematical Biosciences and Engineering, 2007, 4(2): 205-219. doi: 10.3934/mbe.2007.4.205
    [9] H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch . Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences and Engineering, 2014, 11(3): 427-448. doi: 10.3934/mbe.2014.11.427
    [10] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289
  • We consider a model of genetic network that has been previously presented by J. Lewis. This model takes the form of delay differential equations with two delays. We give conditions for the local stability of the non-trivial steady state. We investigate the condition underwhich stability is lost and oscillations occur. In particular, we show that when the ratio of the time delays passes a threshold, sustained oscillations occur through a Hopf bifurcation. Through numerical simulations, we further investigate the ways in which various parameters influence the period and the amplitude of the oscillations. In conclusion, we discuss the implications of our results.


  • This article has been cited by:

    1. H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012
    2. H. T. Banks, Jimena L. Davis, Shuhua Hu, 2010, Chapter 2, 978-3-642-11277-5, 19, 10.1007/978-3-642-11278-2_2
    3. H T Banks, Jimena L Davis, Stacey L Ernstberger, Shuhua Hu, Elena Artimovich, Arun K Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, 2009, 25, 0266-5611, 095003, 10.1088/0266-5611/25/9/095003
    4. H. T. Banks, John E. Banks, Natalie G. Cody, Mark S. Hoddle, Annabel E. Meade, Population model for the decline of Homalodisca vitripennis (Hemiptera: Cicadellidae) over a ten-year period, 2019, 13, 1751-3758, 422, 10.1080/17513758.2019.1616839
    5. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    6. 2012, 978-1-4398-8083-8, 241, 10.1201/b12209-19
    7. E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6
    8. K. Wendelsdorf, G. Dean, Shuhua Hu, S. Nordone, H.T. Banks, Host immune responses that promote initial HIV spread, 2011, 289, 00225193, 17, 10.1016/j.jtbi.2011.08.012
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2713) PDF downloads(455) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog