An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems

  • Received: 01 July 2005 Accepted: 29 June 2018 Published: 01 February 2007
  • MSC : 65N06, 65N12, 65N55, 92-08.

  • Reaction-diffusion-chemotaxis systems have proven to be fairly accurate mathematical models for many pattern formation problems in chemistry and biology. These systems are important for computer simulations of patterns, parameter estimations as well as analysis of the biological systems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. In this paper, a general reaction-diffusion-chemotaxis system is considered for specific numerical issues of pattern simulations. We propose a fully explicit discretization combined with a variable optimal time step strategy for solving the reactiondiffusion- chemotaxis system. Theorems about stability and convergence of the algorithm are given to show that the algorithm is highly stable and efficient. Numerical experiment results on a model problem are given for comparison with other numerical methods. Simulations on two real biological experiments will also be shown.

    Citation: Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems[J]. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187

    Related Papers:

  • Reaction-diffusion-chemotaxis systems have proven to be fairly accurate mathematical models for many pattern formation problems in chemistry and biology. These systems are important for computer simulations of patterns, parameter estimations as well as analysis of the biological systems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. In this paper, a general reaction-diffusion-chemotaxis system is considered for specific numerical issues of pattern simulations. We propose a fully explicit discretization combined with a variable optimal time step strategy for solving the reactiondiffusion- chemotaxis system. Theorems about stability and convergence of the algorithm are given to show that the algorithm is highly stable and efficient. Numerical experiment results on a model problem are given for comparison with other numerical methods. Simulations on two real biological experiments will also be shown.


    加载中
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1746) PDF downloads(525) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog