Differential susceptibility and infectivity epidemic models

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 34D20, 34D23, 92D30.

  • We formulate differential susceptibility and differential infectivity models for disease transmission in this paper. The susceptibles are divided into n groups based on their susceptibilities, and the infectives are divided into m groups according to their infectivities. Both the standard incidence and the bilinear incidence are considered for different diseases. We obtain explicit formulas for the reproductive number. We define the reproductive number for each subgroup. Then the reproductive number for the entire population is a weighted average of those reproductive numbers for the subgroups. The formulas for the reproductive number are derived from the local stability of the infection-free equilibrium. We show that the infection-free equilibrium is globally stable as the reproductive number is less than one for the models with the bilinear incidence or with the standard incidence but no disease-induced death. We then show that if the reproductive number is greater than one, there exists a unique endemic equilibrium for these models. For the general cases of the models with the standard incidence and death, conditions are derived to ensure the uniqueness of the endemic equilibrium. We also provide numerical examples to demonstrate that the unique endemic equilibrium is asymptotically stable if it exists.

    Citation: James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 89-100. doi: 10.3934/mbe.2006.3.89

    Related Papers:

  • We formulate differential susceptibility and differential infectivity models for disease transmission in this paper. The susceptibles are divided into n groups based on their susceptibilities, and the infectives are divided into m groups according to their infectivities. Both the standard incidence and the bilinear incidence are considered for different diseases. We obtain explicit formulas for the reproductive number. We define the reproductive number for each subgroup. Then the reproductive number for the entire population is a weighted average of those reproductive numbers for the subgroups. The formulas for the reproductive number are derived from the local stability of the infection-free equilibrium. We show that the infection-free equilibrium is globally stable as the reproductive number is less than one for the models with the bilinear incidence or with the standard incidence but no disease-induced death. We then show that if the reproductive number is greater than one, there exists a unique endemic equilibrium for these models. For the general cases of the models with the standard incidence and death, conditions are derived to ensure the uniqueness of the endemic equilibrium. We also provide numerical examples to demonstrate that the unique endemic equilibrium is asymptotically stable if it exists.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2271) PDF downloads(538) Cited by(30)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog