Noise-sensitive measure for stochastic resonance in biological oscillators

  • Received: 01 February 2006 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 37H10, 92B99.

  • There has been ample experimental evidence that a variety of biological systems use the mechanism of stochastic resonance for tasks such as prey capture and sensory information processing. Traditional quantities for the characterization of stochastic resonance, such as the signal-to-noise ratio, possess a low noise sensitivity in the sense that they vary slowly about the optimal noise level. To tune to this level for improved system performance in a noisy environment, a high sensitivity to noise is required. Here we show that, when the resonance is understood as a manifestation of phase synchronization, the average synchronization time between the input and the output signal has an extremely high sensitivity in that it exhibits a cusp-like behavior about the optimal noise level. We use a class of biological oscillators to demonstrate this phenomenon, and provide a theoretical analysis to establish its generality. Whether a biological system actually takes advantage of phase synchronization and the cusp-like behavior to tune to optimal noise level presents an interesting issue of further theoretical and experimental research.

    Citation: Ying-Cheng Lai, Kwangho Park. Noise-sensitive measure for stochastic resonance in biological oscillators[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 583-602. doi: 10.3934/mbe.2006.3.583

    Related Papers:

  • There has been ample experimental evidence that a variety of biological systems use the mechanism of stochastic resonance for tasks such as prey capture and sensory information processing. Traditional quantities for the characterization of stochastic resonance, such as the signal-to-noise ratio, possess a low noise sensitivity in the sense that they vary slowly about the optimal noise level. To tune to this level for improved system performance in a noisy environment, a high sensitivity to noise is required. Here we show that, when the resonance is understood as a manifestation of phase synchronization, the average synchronization time between the input and the output signal has an extremely high sensitivity in that it exhibits a cusp-like behavior about the optimal noise level. We use a class of biological oscillators to demonstrate this phenomenon, and provide a theoretical analysis to establish its generality. Whether a biological system actually takes advantage of phase synchronization and the cusp-like behavior to tune to optimal noise level presents an interesting issue of further theoretical and experimental research.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1631) PDF downloads(436) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog