Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology

  • Received: 01 November 2005 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 76M27,92B05,92C15,92C50.

  • Numerical analysis and computational simulation of partial differential equation models in mathematical biology are now an integral part of the research in this field. Increasingly we are seeing the development of partial differential equation models in more than one space dimension, and it is therefore necessary to generate a clear and effective visualisation platform between the mathematicians and biologists to communicate the results. The mathematical extension of models to three spatial dimensions from one or two is often a trivial task, whereas the visualisation of the results is more complicated. The scope of this paper is to apply the established marching cubes volume rendering technique to the study of solid tumour growth and invasion, and present an adaptation of the algorithm to speed up the surface rendering from numerical simulation data. As a specific example, in this paper we examine the computational solutions arising from numerical simulation results of a mathematical model of malignant solid tumour growth and invasion in an irregular heterogeneous three-dimensional domain, i.e., the female breast. Due to the different variables that interact with each other, more than one data set may have to be displayed simultaneously, which can be realized through transparency blending. The usefulness of the proposed method for visualisation in a more general context will also be discussed.

    Citation: Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 571-582. doi: 10.3934/mbe.2006.3.571

    Related Papers:

  • Numerical analysis and computational simulation of partial differential equation models in mathematical biology are now an integral part of the research in this field. Increasingly we are seeing the development of partial differential equation models in more than one space dimension, and it is therefore necessary to generate a clear and effective visualisation platform between the mathematicians and biologists to communicate the results. The mathematical extension of models to three spatial dimensions from one or two is often a trivial task, whereas the visualisation of the results is more complicated. The scope of this paper is to apply the established marching cubes volume rendering technique to the study of solid tumour growth and invasion, and present an adaptation of the algorithm to speed up the surface rendering from numerical simulation data. As a specific example, in this paper we examine the computational solutions arising from numerical simulation results of a mathematical model of malignant solid tumour growth and invasion in an irregular heterogeneous three-dimensional domain, i.e., the female breast. Due to the different variables that interact with each other, more than one data set may have to be displayed simultaneously, which can be realized through transparency blending. The usefulness of the proposed method for visualisation in a more general context will also be discussed.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1851) PDF downloads(540) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog