Loading [Contrib]/a11y/accessibility-menu.js

Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs

  • Received: 01 April 2005 Accepted: 29 June 2018 Published: 01 May 2006
  • MSC : 92D30.

  • This paper presents a statistical study of a deterministic model for the transmission dynamics and control of severe acute respiratory syndrome (SARS). The effect of the model parameters on the dynamics of the disease is analyzed using sensitivity and uncertainty analyses. The response (or output) of interest is the control reproduction number, which is an epidemiological threshold governing the persistence or elimination of SARS in a given population. The compartmental model includes parameters associated with control measures such as quarantine and isolation of asymptomatic and symptomatic individuals. One feature of our analysis is the incorporation of time-dependent functions into the model to reflect the progressive refinement of these SARS control measures over time. Consequently, the model contains continuous time-varying inputs and outputs. In this setting, sensitivity and uncertainty analytical techniques are used in order to analyze the impact of the uncertainty in the parameter estimates on the results obtained and to determine which parameters have the largest impact on driving the disease dynamics.

    Citation: Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527

    Related Papers:

    [1] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [2] Fatmawati, Rashid Jan, Muhammad Altaf Khan, Yasir Khan, Saif ullah . A new model of dengue fever in terms of fractional derivative. Mathematical Biosciences and Engineering, 2020, 17(5): 5267-5287. doi: 10.3934/mbe.2020285
    [3] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd . Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences and Engineering, 2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553
    [4] Konstantin Weise, Erik Müller, Lucas Poßner, Thomas R. Knösche . Comparison of the performance and reliability between improved sampling strategies for polynomial chaos expansion. Mathematical Biosciences and Engineering, 2022, 19(8): 7425-7480. doi: 10.3934/mbe.2022351
    [5] Aili Wang, Xueying Zhang, Rong Yan, Duo Bai, Jingmin He . Evaluating the impact of multiple factors on the control of COVID-19 epidemic: A modelling analysis using India as a case study. Mathematical Biosciences and Engineering, 2023, 20(4): 6237-6272. doi: 10.3934/mbe.2023269
    [6] Qing Wu, Chunjiang Zhang, Mengya Zhang, Fajun Yang, Liang Gao . A modified comprehensive learning particle swarm optimizer and its application in cylindricity error evaluation problem. Mathematical Biosciences and Engineering, 2019, 16(3): 1190-1209. doi: 10.3934/mbe.2019057
    [7] Xiaojing Wang, Yu Liang, Jiahui Li, Maoxing Liu . Modeling COVID-19 transmission dynamics incorporating media coverage and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10392-10403. doi: 10.3934/mbe.2023456
    [8] Tingting Zhao, Robert J. Smith? . Global dynamical analysis of plant-disease models with nonlinear impulsive cultural control strategy. Mathematical Biosciences and Engineering, 2019, 16(6): 7022-7056. doi: 10.3934/mbe.2019353
    [9] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [10] Tao-Li Kang, Hai-Feng Huo, Hong Xiang . Dynamics and optimal control of tuberculosis model with the combined effects of vaccination, treatment and contaminated environments. Mathematical Biosciences and Engineering, 2024, 21(4): 5308-5334. doi: 10.3934/mbe.2024234
  • This paper presents a statistical study of a deterministic model for the transmission dynamics and control of severe acute respiratory syndrome (SARS). The effect of the model parameters on the dynamics of the disease is analyzed using sensitivity and uncertainty analyses. The response (or output) of interest is the control reproduction number, which is an epidemiological threshold governing the persistence or elimination of SARS in a given population. The compartmental model includes parameters associated with control measures such as quarantine and isolation of asymptomatic and symptomatic individuals. One feature of our analysis is the incorporation of time-dependent functions into the model to reflect the progressive refinement of these SARS control measures over time. Consequently, the model contains continuous time-varying inputs and outputs. In this setting, sensitivity and uncertainty analytical techniques are used in order to analyze the impact of the uncertainty in the parameter estimates on the results obtained and to determine which parameters have the largest impact on driving the disease dynamics.


  • This article has been cited by:

    1. A. O. Egonmwan, D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, 2019, 59, 1598-5865, 129, 10.1007/s12190-018-1172-1
    2. Fumin Zhang, Zhipeng Qiu, Aijun Huang, Xin Zhao, Optimal control and cost-effectiveness analysis of a Huanglongbing model with comprehensive interventions, 2021, 90, 0307904X, 719, 10.1016/j.apm.2020.09.033
    3. CHANDRA N. PODDER, ABBA B. GUMEL, CHRIS S. BOWMAN, ROBERT G. MCLEOD, MATHEMATICAL STUDY OF THE IMPACT OF QUARANTINE, ISOLATION AND VACCINATION IN CURTAILING AN EPIDEMIC, 2007, 15, 0218-3390, 185, 10.1142/S0218339007002180
    4. Folashade B. Agusto, Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus, 2017, 22, 1553-524X, 687, 10.3934/dcdsb.2017034
    5. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, 2012, 131, 1431-7613, 19, 10.1007/s12064-011-0148-6
    6. Mohammad A. Safi, Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function, 2019, 7, 2227-7390, 350, 10.3390/math7040350
    7. Jianyong Wu, Radhika Dhingra, Manoj Gambhir, Justin V. Remais, Sensitivity analysis of infectious disease models: methods, advances and their application, 2013, 10, 1742-5689, 20121018, 10.1098/rsif.2012.1018
    8. N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel, Mathematical analysis of a model for AVL–HIV co-endemicity, 2016, 271, 00255564, 80, 10.1016/j.mbs.2015.10.008
    9. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, 2015, 421, 0022247X, 1651, 10.1016/j.jmaa.2014.08.019
    10. Mohammad A. Safi, Dessalegn Y. Melesse, Abba B. Gumel, Dynamics Analysis of a Multi-strain Cholera Model with an Imperfect Vaccine, 2013, 75, 0092-8240, 1104, 10.1007/s11538-013-9845-2
    11. Abba B. Gumel, Enahoro A. Iboi, Calistus N. Ngonghala, Elamin H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, 2021, 6, 24680427, 148, 10.1016/j.idm.2020.11.005
    12. Folashade B. Agusto, Shamise Easley, Kenneth Freeman, Madison Thomas, Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus, 2016, 2016, 1748-670X, 1, 10.1155/2016/4320514
    13. Mohammad A. Safi, Abba B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, 2011, 218, 00963003, 1941, 10.1016/j.amc.2011.07.007
    14. F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers, Mathematical Model of MDR-TB and XDR-TB with Isolation and Lost to Follow-Up, 2015, 2015, 1085-3375, 1, 10.1155/2015/828461
    15. C. N. Podder, O. Sharomi, A. B. Gumel, E. Strawbridge, Mathematical Analysis of a Model for Assessing the Impact of Antiretroviral Therapy, Voluntary Testing and Condom Use in Curtailing the Spread of HIV, 2011, 19, 0971-3514, 283, 10.1007/s12591-011-0090-6
    16. Folashade B Agusto, Miranda I Teboh-Ewungkem, Abba B Gumel, Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, 2015, 13, 1741-7015, 10.1186/s12916-015-0318-3
    17. F.B. Agusto, M.C.A. Leite, Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria, 2019, 4, 24680427, 161, 10.1016/j.idm.2019.05.003
    18. Farinaz Forouzannia, Abba B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, 2014, 247, 00255564, 80, 10.1016/j.mbs.2013.10.011
    19. Adnan Khan, Sultan Sial, Mudassar Imran, Transmission Dynamics of Hepatitis C with Control Strategies, 2014, 2014, 2314-5080, 1, 10.1155/2014/654050
    20. Mudassar Imran, Muhammad Hassan, Muhammad Dur-E-Ahmad, Adnan Khan, A comparison of a deterministic and stochastic model for Hepatitis C with an isolation stage, 2013, 7, 1751-3758, 276, 10.1080/17513758.2013.859856
    21. Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4
    22. A. Nwankwo, D. Okuonghae, A Mathematical Model for the Population Dynamics of Malaria with a Temperature Dependent Control, 2019, 0971-3514, 10.1007/s12591-019-00466-y
    23. Abba B. Gumel, Ahmed Abdelrazec, Kamaldeen Okuneye, Mathematical analysis of a weather-driven model for the population ecology of mosquitoes, 2017, 15, 1551-0018, 57, 10.3934/mbe.2018003
    24. S. I. Kabanikhin, O. I. Krivorotko, Mathematical Modeling of the Wuhan COVID-2019 Epidemic and Inverse Problems, 2020, 60, 0965-5425, 1889, 10.1134/S0965542520110068
    25. A. S. Hassan, S. M. Garba, A. B. Gumel, J. M.-S. Lubuma, Dynamics ofMycobacteriumandbovine tuberculosisin a Human-Buffalo Population, 2014, 2014, 1748-670X, 1, 10.1155/2014/912306
    26. Mohammad A. Safi, Abba B. Gumel, Dynamics analysis of a quarantine model in two patches, 2015, 38, 01704214, 349, 10.1002/mma.3072
    27. ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211
    28. Nafiu Hussaini, Kamaldeen Okuneye, Abba B. Gumel, Mathematical analysis of a model for zoonotic visceral leishmaniasis, 2017, 2, 24680427, 455, 10.1016/j.idm.2017.12.002
    29. F.B. Agusto, M.A. Khan, Optimal control strategies for dengue transmission in pakistan, 2018, 305, 00255564, 102, 10.1016/j.mbs.2018.09.007
    30. Mohammad A. Safi, Abba B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, 2011, 12, 14681218, 215, 10.1016/j.nonrwa.2010.06.009
    31. F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002
    32. F.B. Agusto, S. Bewick, W.F. Fagan, Mathematical model of Zika virus with vertical transmission, 2017, 2, 24680427, 244, 10.1016/j.idm.2017.05.003
    33. Pei-Yu Liu, Sha He, Li-Bin Rong, San-Yi Tang, The effect of control measures on COVID-19 transmission in Italy: Comparison with Guangdong province in China, 2020, 9, 2049-9957, 10.1186/s40249-020-00730-2
    34. Zuiyuan Guo, Dan Xiao, Dongli Li, Xiuhong Wang, Yayu Wang, Tiecheng Yan, Zhiqi Wang, Zhen Jin, Predicting and Evaluating the Epidemic Trend of Ebola Virus Disease in the 2014-2015 Outbreak and the Effects of Intervention Measures, 2016, 11, 1932-6203, e0152438, 10.1371/journal.pone.0152438
    35. Lindsay Simpson, Abba B. Gumel, Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics, 2017, 293, 00963003, 168, 10.1016/j.amc.2016.07.043
    36. KAMALDEEN O. OKUNEYE, JORGE X. VELASCO-HERNANDEZ, ABBA B. GUMEL, THE “UNHOLY” CHIKUNGUNYA–DENGUE–ZIKA TRINITY: A THEORETICAL ANALYSIS, 2017, 25, 0218-3390, 545, 10.1142/S0218339017400046
    37. A. O. Egonmwan, D. Okuonghae, Mathematical analysis of a tuberculosis model with imperfect vaccine, 2019, 12, 1793-5245, 1950073, 10.1142/S1793524519500736
    38. Kamaldeen Okuneye, Steffen E. Eikenberry, Abba B. Gumel, Weather-driven malaria transmission model with gonotrophic and sporogonic cycles, 2019, 13, 1751-3758, 288, 10.1080/17513758.2019.1570363
    39. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, 2013, 399, 0022247X, 565, 10.1016/j.jmaa.2012.10.015
    40. Jan M. Baetens, Bernard De Baets, 2016, Chapter 9, 978-3-319-44364-5, 91, 10.1007/978-3-319-44365-2_9
    41. I. Santamaría-Holek, V. Castaño, Possible fates of the spread of SARS-CoV-2 in the Mexican context, 2020, 7, 2054-5703, 200886, 10.1098/rsos.200886
    42. Nasser Al-Salti, Ibrahim M. Elmojtaba, Jaqueline Mesquita, Dayse Pastore, Maryam Al-Yahyai, 2021, Chapter 11, 978-981-16-2449-0, 219, 10.1007/978-981-16-2450-6_11
    43. Fumin Zhang, Zhipeng Qiu, Aijun Huang, Yan Cheng, Guihong Fan, Global dynamics and bifurcation analysis of an insect-borne plant disease model with two transmission routes, 2022, 15, 1793-5245, 10.1142/S1793524522500553
    44. Baoquan Zhou, Bingtao Han, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching, 2021, 410, 00963003, 126388, 10.1016/j.amc.2021.126388
    45. Sandra Cole, Stephen Wirkus, Modeling the Dynamics of Heroin and Illicit Opioid Use Disorder, Treatment, and Recovery, 2022, 84, 0092-8240, 10.1007/s11538-022-01002-w
    46. Theophilus Kwofie, Matthias Dogbatsey, Stephen E. Moore, Curtailing crime dynamics: A mathematical approach, 2023, 8, 2297-4687, 10.3389/fams.2022.1086745
    47. Calistus N. Ngonghala, Abba B. Gumel, 2023, 9780323950640, 221, 10.1016/B978-0-323-95064-0.00013-0
    48. Buddhi Pantha, Folashade B. Agusto, Ibrahim M. Elmojtaba, Optimal control applied to a visceral leishmaniasis model, 2020, 2020, 1072-6691, 80, 10.58997/ejde.2020.80
    49. Queen Tollett, Salman Safdar, Abba B. Gumel, Dynamics of a two-group model for assessing the impacts of pre-exposure prophylaxis, testing and risk behaviour change on the spread and control of HIV/AIDS in an MSM population, 2023, 24680427, 10.1016/j.idm.2023.11.004
    50. Shuaibu Ahijo Abdullahi, Abdulrazaq Garba Habib, Nafiu Hussaini, Mathematical analysis for the dynamics of snakebite envenoming, 2024, 35, 1012-9405, 10.1007/s13370-023-01156-3
    51. Salman Safdar, Abba B. Gumel, 2023, Chapter 10, 978-3-031-40804-5, 243, 10.1007/978-3-031-40805-2_10
    52. Binod Pant, Abba B. Gumel, Mathematical assessment of the roles of age heterogeneity and vaccination on the dynamics and control of SARS-CoV-2, 2024, 24680427, 10.1016/j.idm.2024.04.007
    53. Adel Alatawi, Abba B. Gumel, Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia, 2024, 21, 1551-0018, 6425, 10.3934/mbe.2024281
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3705) PDF downloads(726) Cited by(53)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog