Analysis and Optimization of Drug Resistant an Phase-Specific Cancer

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92D25, 93C23, 92C50.

  • This paper presents analysis and biomedical implications of a certain class of bilinear systems that can be applied in modeling of cancer chemotherapy. It combines models that so far have been studied separately, taking into account both the phenomenon of gene amplification and drug specificity in chemotherapy in their different aspects. The methodology of analysis of such models, based on system decomposition, is discussed. The mathematical description is given by an infinite dimensional state equation with a system matrix, the form of which allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension, can have any form, the second one is infinite-dimensional and tridiagonal. Then the optimal control problem is defined in $l^1$ space. To derive necessary conditions for optimal control, the model description is transformed into an integrodifferential one.

    Citation: Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657

    Related Papers:

  • This paper presents analysis and biomedical implications of a certain class of bilinear systems that can be applied in modeling of cancer chemotherapy. It combines models that so far have been studied separately, taking into account both the phenomenon of gene amplification and drug specificity in chemotherapy in their different aspects. The methodology of analysis of such models, based on system decomposition, is discussed. The mathematical description is given by an infinite dimensional state equation with a system matrix, the form of which allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension, can have any form, the second one is infinite-dimensional and tridiagonal. Then the optimal control problem is defined in $l^1$ space. To derive necessary conditions for optimal control, the model description is transformed into an integrodifferential one.


    加载中
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1843) PDF downloads(510) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog