Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data

  • Received: 01 August 2004 Accepted: 29 June 2018 Published: 01 November 2004
  • MSC : 62H20, 62P10.

  • A basic task in understanding the neural mechanism of learning and adaptation is to detect and characterize neural interactions and their changes in response to new experiences. Recent experimental work has indicated that neural interactions in the primary motor cortex of the monkey brain tend to change their preferred directions during adaptation to an external force field. To quantify such changes, it is necessary to develop computational methodology for data analysis. Given that typical experimental data consist of spike trains recorded from individual neurons, probing the strength of neural interactions and their changes is extremely challenging. We recently reported in a brief communication [Zhu et al., Neural Computations 15 , 2359 (2003)] a general procedure to detect and quantify the causal interactions among neurons, which is based on the method of directed transfer function derived from a class of multivariate, linear stochastic models. The procedure was applied to spike trains from neurons in the primary motor cortex of the monkey brain during adaptation, where monkeys were trained to learn a new skill by moving their arms to reach a target under external perturbations. Our computation and analysis indicated that the adaptation tends to alter the connection topology of the underlying neural network, yet the average interaction strength in the network is approximately conserved before and after the adaptation. The present paper gives a detailed account of this procedure and its applicability to spike-train data in terms of the hypotheses, theory, computational methods, control test, and extensive analysis of experimental data.

    Citation: Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He. Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data[J]. Mathematical Biosciences and Engineering, 2005, 2(1): 1-23. doi: 10.3934/mbe.2005.2.1

    Related Papers:

  • A basic task in understanding the neural mechanism of learning and adaptation is to detect and characterize neural interactions and their changes in response to new experiences. Recent experimental work has indicated that neural interactions in the primary motor cortex of the monkey brain tend to change their preferred directions during adaptation to an external force field. To quantify such changes, it is necessary to develop computational methodology for data analysis. Given that typical experimental data consist of spike trains recorded from individual neurons, probing the strength of neural interactions and their changes is extremely challenging. We recently reported in a brief communication [Zhu et al., Neural Computations 15 , 2359 (2003)] a general procedure to detect and quantify the causal interactions among neurons, which is based on the method of directed transfer function derived from a class of multivariate, linear stochastic models. The procedure was applied to spike trains from neurons in the primary motor cortex of the monkey brain during adaptation, where monkeys were trained to learn a new skill by moving their arms to reach a target under external perturbations. Our computation and analysis indicated that the adaptation tends to alter the connection topology of the underlying neural network, yet the average interaction strength in the network is approximately conserved before and after the adaptation. The present paper gives a detailed account of this procedure and its applicability to spike-train data in terms of the hypotheses, theory, computational methods, control test, and extensive analysis of experimental data.


    加载中
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1560) PDF downloads(499) Cited by(26)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog