Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks

  • Received: 01 April 2004 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 92D30, 37A25, 37D45, 37N25, 05C80.

  • We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.

    Citation: Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 347-359. doi: 10.3934/mbe.2004.1.347

    Related Papers:

  • We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.


    加载中
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2283) PDF downloads(531) Cited by(84)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog