Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells

1. Department of Mathematics, University of Michigan, 5860 E. Hall, Ann Arbor, MI 48109
2. Department of Biology, University of New Mexico, Albuquerque, NM 87131
3. Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2
4. Mathematical Modeling and Analysis, T-7, Los Alamos National Laboratory, Mail Stop B284, Los Alamos, NM 87545
5. Theoretical Division T-10, Los Alamos National Laboratory, Los Alamos, NM 87545

Mathematical models of HIV-1 infection can help interpret drug treatment experiments and improve our understanding of the interplay between HIV-1 and the immune system. We develop and analyze an age-structured model of HIV-1 infection that allows for variations in the death rate of productively infected T cells and the production rate of viral particles as a function of the length of time a T cell has been infected. We show that this model is a generalization of the standard differential equation and of delay models previously used to describe HIV-1 infection, and provides a means for exploring fundamental issues of viral production and death. We show that the model has uninfected and infected steady states, linked by a transcritical bifurcation. We perform a local stability analysis of the nontrivial equilibrium solution and provide a general stability condition for models with age structure. We then use numerical methods to study solutions of our model focusing on the analysis of primary HIV infection. We show that the time to reach peak viral levels in the blood depends not only on initial conditions but also on the way in which viral production ramps up. If viral production ramps up slowly, we find that the time to peak viral load is delayed compared to results obtained using the standard (constant viral production) model of HIV infection. We find that data on viral load changing over time is insufficient to identify the functions specifying the dependence of the viral production rate or infected cell death rate on infected cell age. These functions must be determined through new quantitative experiments.
  Figure/Table
  Supplementary
  Article Metrics

Keywords and production rates.; Age-structured model; HIV; variable death

Citation: Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson. An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 267-288. doi: 10.3934/mbe.2004.1.267

 

This article has been cited by

  • 1. Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon, An age-structured model with immune response of HIV infection: Modeling and optimal control approach, Discrete and Continuous Dynamical Systems - Series B, 2013, 19, 1, 153, 10.3934/dcdsb.2014.19.153
  • 2. Cameron J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Analysis: Real World Applications, 2015, 22, 354, 10.1016/j.nonrwa.2014.10.004
  • 3. Christian L Althaus, Rob J De Boer, Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy, Molecular Systems Biology, 2010, 6, 10.1038/msb.2010.4
  • 4. Libin Rong, Michael A. Gilchrist, Zhilan Feng, Alan S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, Journal of Theoretical Biology, 2007, 247, 4, 804, 10.1016/j.jtbi.2007.04.014
  • 5. Redouane Qesmi, Susie ElSaadany, Jane Marie Heffernan, Jianhong Wu, A Hepatitis B and C Virus Model with Age since Infection that Exhibits Backward Bifurcation, SIAM Journal on Applied Mathematics, 2011, 71, 4, 1509, 10.1137/10079690X
  • 6. Mohamed Nor Frioui, Sofiane El-hadi Miri, Tarik Mohamed Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, Journal of Applied Mathematics and Computing, 2017, 10.1007/s12190-017-1133-0
  • 7. Dongmei Xiao, Shigui Ruan, Yu Yang, Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function, Mathematical Biosciences and Engineering, 2015, 12, 4, 859, 10.3934/mbe.2015.12.859
  • 8. Jinliang Wang, Jiying Lang, Xingfu Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Analysis: Real World Applications, 2017, 34, 75, 10.1016/j.nonrwa.2016.08.001
  • 9. Maria R. D’Orsogna, Tom Chou, First Passage and Cooperativity of Queuing Kinetics, Physical Review Letters, 2005, 95, 17, 10.1103/PhysRevLett.95.170603
  • 10. Michael A. Gilchrist, Daniel Coombs, Alan S. Perelson, Optimizing within-host viral fitness: infected cell lifespan and virion production rate, Journal of Theoretical Biology, 2004, 229, 2, 281, 10.1016/j.jtbi.2004.04.015
  • 11. Cameron J. Browne, Sergei S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 8, 1999, 10.3934/dcdsb.2013.18.1999
  • 12. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, Journal of Biological Dynamics, 2017, 11, sup2, 427, 10.1080/17513758.2016.1226436
  • 13. Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Computers & Mathematics with Applications, 2014, 68, 3, 288, 10.1016/j.camwa.2014.06.002
  • 14. Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Applied Mathematics and Computation, 2015, 263, 315, 10.1016/j.amc.2015.04.055
  • 15. Yuming Chen, Jiying Lang, Jinliang Wang, Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission, Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 10, 3721, 10.3934/dcdsb.2017186
  • 16. Hisashi Inaba, , Age-Structured Population Dynamics in Demography and Epidemiology, 2017, Chapter 7, 333, 10.1007/978-981-10-0188-8_7
  • 17. Gajendra W. Suryawanshi, Alexander Hoffmann, A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins, Journal of Theoretical Biology, 2015, 386, 89, 10.1016/j.jtbi.2015.08.032
  • 18. Xiaoyan Wang, Junyuan Yang, Fei Xu, Analysis and control of an age-structured HIV-1 epidemic model with different transmission mechanisms, Advances in Difference Equations, 2018, 2018, 1, 10.1186/s13662-017-1455-0
  • 19. Yu Teng, Nan Kong, Wanzhu Tu, , Decision Analytics and Optimization in Disease Prevention and Treatment, 2018, 81, 10.1002/9781118960158.ch4
  • 20. John E. Pearson, Paul Krapivsky, Alan S. Perelson, Christophe Fraser, Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions, PLoS Computational Biology, 2011, 7, 2, e1001058, 10.1371/journal.pcbi.1001058
  • 21. Rob J. De Boer, Ruy M. Ribeiro, Alan S. Perelson, Christophe Fraser, Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues, PLoS Computational Biology, 2010, 6, 9, e1000906, 10.1371/journal.pcbi.1000906
  • 22. Gang Huang, Xianning Liu, Yasuhiro Takeuchi, Lyapunov Functions and Global Stability for Age-Structured HIV Infection Model, SIAM Journal on Applied Mathematics, 2012, 72, 1, 25, 10.1137/110826588
  • 23. Daniel Coombs, Michael A. Gilchrist, Colleen L. Ball, Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens, Theoretical Population Biology, 2007, 72, 4, 576, 10.1016/j.tpb.2007.08.005
  • 24. Xiulan Lai, Xingfu Zou, Dynamics of evolutionary competition between budding and lytic viral release strategies, Mathematical Biosciences and Engineering, 2014, 11, 5, 1091, 10.3934/mbe.2014.11.1091
  • 25. Bruno Buonomo, Cruz Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, Journal of Mathematical Analysis and Applications, 2012, 385, 2, 709, 10.1016/j.jmaa.2011.07.006
  • 26. Xiunan Wang, Wendi Wang, An HIV infection model based on a vectored immunoprophylaxis experiment, Journal of Theoretical Biology, 2012, 313, 127, 10.1016/j.jtbi.2012.08.023
  • 27. Xichao Duan, Sanling Yuan, Kaifa Wang, Dynamics of a diffusive age-structured HBV model with saturating incidence, Mathematical Biosciences and Engineering, 2016, 13, 5, 935, 10.3934/mbe.2016024
  • 28. Eric L. Haseltine, John Yin, James B. Rawlings, Implications of decoupling the intracellular and extracellular levels in multi-level models of virus growth, Biotechnology and Bioengineering, 2008, 101, 4, 811, 10.1002/bit.21931
  • 29. Jane M. Heffernan, Lindi M. Wahl, Monte Carlo estimates of natural variation in HIV infection, Journal of Theoretical Biology, 2005, 236, 2, 137, 10.1016/j.jtbi.2005.03.002
  • 30. Shaoli Wang, Xinyu Song, Global properties for an age-structured within-host model with Crowley–Martin functional response, International Journal of Biomathematics, 2017, 10, 02, 1750030, 10.1142/S1793524517500309
  • 31. Xichao Duan, Saling Yuan, Global dynamics of an age-structured virus model with saturation effects, Mathematical Methods in the Applied Sciences, 2016, 10.1002/mma.4102
  • 32. Libin Rong, Alan S. Perelson, Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents, Mathematical Biosciences, 2013, 245, 1, 22, 10.1016/j.mbs.2013.04.012
  • 33. Cameron Browne, Immune response in virus model structured by cell infection-age, Mathematical Biosciences and Engineering, 2016, 13, 5, 887, 10.3934/mbe.2016022
  • 34. Peter Kumberger, Felix Frey, Ulrich S. Schwarz, Frederik Graw, Multiscale modeling of virus replication and spread, FEBS Letters, 2016, 590, 13, 1972, 10.1002/1873-3468.12095
  • 35. Yan Wang, Kaihui Liu, Yijun Lou, An age-structured within-host HIV model with T-cell competition, Nonlinear Analysis: Real World Applications, 2017, 38, 1, 10.1016/j.nonrwa.2017.04.002
  • 36. Jinhu Xu, Yan Geng, Yicang Zhou, Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy, Applied Mathematics and Computation, 2017, 305, 62, 10.1016/j.amc.2017.01.064
  • 37. Jane M. Heffernan, Lindi M. Wahl, Natural variation in HIV infection: Monte Carlo estimates that include CD8 effector cells, Journal of Theoretical Biology, 2006, 243, 2, 191, 10.1016/j.jtbi.2006.05.032
  • 38. Barbara de M. Quintela, Jessica M. Conway, James M. Hyman, Jeremie Guedj, Rodrigo W. dos Santos, Marcelo Lobosco, Alan S. Perelson, A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents, Frontiers in Microbiology, 2018, 9, 10.3389/fmicb.2018.00601
  • 39. Pei Yu, Yuting Ding, Weihua Jiang, Equivalence of the MTS Method and CMR Method for Differential Equations Associated with Semisimple Singularity, International Journal of Bifurcation and Chaos, 2014, 24, 01, 1450003, 10.1142/S0218127414500035
  • 40. Libin Rong, Zhilan Feng, Alan S. Perelson, Mathematical Analysis of Age‐Structured HIV‐1 Dynamics with Combination Antiretroviral Therapy, SIAM Journal on Applied Mathematics, 2007, 67, 3, 731, 10.1137/060663945
  • 41. Rui Xu, Xiaohong Tian, Shihua Zhang, An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions, Journal of Biological Dynamics, 2018, 12, 1, 89, 10.1080/17513758.2017.1404646
  • 42. Roland R Regoes, Andrew Yates, Rustom Antia, Mathematical models of cytotoxic T-lymphocyte killing, Immunology and Cell Biology, 2007, 85, 4, 274, 10.1038/sj.icb.7100053
  • 43. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, Journal of Mathematical Analysis and Applications, 2015, 432, 1, 289, 10.1016/j.jmaa.2015.06.040
  • 44. Shaoli Wang, Jianhong Wu, Libin Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, Mathematical Biosciences and Engineering, 2016, 14, 3, 805, 10.3934/mbe.2017044
  • 45. Libin Rong, Jeremie Guedj, Harel Dahari, Daniel J. Coffield, Micha Levi, Patrick Smith, Alan S. Perelson, Becca Asquith, Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model, PLoS Computational Biology, 2013, 9, 3, e1002959, 10.1371/journal.pcbi.1002959
  • 46. Liman Dai, Xingfu Zou, Analysis of a within-host age-structured model with mutations between two viral strains, Journal of Mathematical Analysis and Applications, 2015, 426, 2, 953, 10.1016/j.jmaa.2015.01.032
  • 47. Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, Studies in Applied Mathematics, 2017, 138, 1, 43, 10.1111/sapm.12135
  • 48. Jianhua Pang, Jing Chen, Zijian Liu, Ping Bi, Shigui Ruan, Local and Global Stabilities of a Viral Dynamics Model with Infection-Age and Immune Response, Journal of Dynamics and Differential Equations, 2018, 10.1007/s10884-018-9663-1
  • 49. J.M. Heffernan, L.M. Wahl, Improving estimates of the basic reproductive ratio: Using both the mean and the dispersal of transition times, Theoretical Population Biology, 2006, 70, 2, 135, 10.1016/j.tpb.2006.03.003
  • 50. Daniel Campos, Vicenç Méndez, Sergei Fedotov, The effects of distributed life cycles on the dynamics of viral infections, Journal of Theoretical Biology, 2008, 254, 2, 430, 10.1016/j.jtbi.2008.05.035
  • 51. Adam Attarian, Hien Tran, An Optimal Control Approach to Structured Treatment Interruptions for HIV Patients: A Personalized Medicine Perspective, Applied Mathematics, 2017, 08, 07, 934, 10.4236/am.2017.87074
  • 52. Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang, Optimal control of an age-structured model of HIV infection, Applied Mathematics and Computation, 2012, 219, 5, 2766, 10.1016/j.amc.2012.09.003
  • 53. Liangchen Li, Rui Xu, Global dynamics of an age-structured in-host viral infection model with humoral immunity, Advances in Difference Equations, 2016, 2016, 1, 10.1186/s13662-015-0733-y
  • 54. Khalid Hattaf, Yu Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, International Journal of Biomathematics, 2018, 1850065, 10.1142/S1793524518500651
  • 55. J. Wang, M. Guo, T. Kuniya, Mathematical analysis for a multi-group SEIR epidemic model with age-dependent relapse, Applicable Analysis, 2017, 1, 10.1080/00036811.2017.1336545
  • 56. Carolin Zitzmann, Lars Kaderali, Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling, Frontiers in Microbiology, 2018, 9, 10.3389/fmicb.2018.01546
  • 57. Dongxue Yan, Xianlong Fu, Analysis of an age-structured HIV infection model with logistic target-cell growth and antiretroviral therapy, IMA Journal of Applied Mathematics, 2018, 10.1093/imamat/hxy034
  • 58. David S. Khoury, Rosemary Aogo, Georges Randriafanomezantsoa-Radohery, James M. McCaw, Julie A. Simpson, James S. McCarthy, Ashraful Haque, Deborah Cromer, Miles P. Davenport, Within-host modeling of blood-stage malaria, Immunological Reviews, 2018, 285, 1, 168, 10.1111/imr.12697
  • 59. Kosaku Kitagawa, Toshikazu Kuniya, Shinji Nakaoka, Yusuke Asai, Koichi Watashi, Shingo Iwami, Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection, Bulletin of Mathematical Biology, 2019, 10.1007/s11538-018-00564-y
  • 60. Cavan Reilly, Steve Wietgrefe, Gerald Sedgewick, Ashley Haase, Determination of simian immunodeficiency virus production by infected activated and resting cells, AIDS, 2007, 21, 2, 163, 10.1097/QAD.0b013e328012565b
  • 61. Daniel Rüdiger, Sascha Young Kupke, Tanja Laske, Pawel Zmora, Udo Reichl, Claus O. Wilke, Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions, PLOS Computational Biology, 2019, 15, 2, e1006819, 10.1371/journal.pcbi.1006819
  • 62. Libin Rong, Zhilan Feng, Alan S. Perelson, , Mathematical Modelling of Biosystems, 2008, Chapter 3, 87, 10.1007/978-3-540-76784-8_3
  • 63. Yang Jiang, Joyce E. van der Welle, Olaf Rubingh, Gerco van Eikenhorst, Wilfried A.M. Bakker, Yvonne E. Thomassen, Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors, Process Biochemistry, 2019, 10.1016/j.procbio.2019.03.010
  • 64. Frederik Graw, Alan S. Perelson, , Mathematical Methods and Models in Biomedicine, 2013, Chapter 1, 3, 10.1007/978-1-4614-4178-6_1
  • 65. Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang, Hopf bifurcation of an age-structured HIV infection model with logistic target-cell growth, Journal of Biological Dynamics, 2019, 13, 1, 362, 10.1080/17513758.2019.1602171
  • 66. B. M. Quintela, J. M. Conway, J. M. Hyman, R. F. Reis, R. W. dos Santos, M. Lobosco, A. S. Perelson, , VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016, 2017, Chapter 128, 508, 10.1007/978-981-10-4086-3_128
  • 67. Junyuan Yang, Xiaoyan Wang, Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion, Applied Mathematics and Computation, 2019, 360, 236, 10.1016/j.amc.2019.05.007
  • 68. Yuji Li, Rui Xu, Jiazhe Lin, Global dynamics for a class of infection-age model with nonlinear incidence, Nonlinear Analysis: Modelling and Control, 2018, 24, 1, 47, 10.15388/NA.2019.1.4
  • 69. Eric Numfor, Optimal treatment in a multi-strain within-host model of HIV with age structure, Journal of Mathematical Analysis and Applications, 2019, 123410, 10.1016/j.jmaa.2019.123410
  • 70. Janka Petravic, David P Wilson, Simulating the entire natural course of HIV infection by extending the basic viral dynamics equations to include declining viral clearance, Pathogens and Disease, 2019, 77, 4, 10.1093/femspd/ftz043
  • 71. Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani, Global stability for an age-structured multistrain virus dynamics model with humoral immunity, Journal of Applied Mathematics and Computing, 2019, 10.1007/s12190-019-01283-w
  • 72. DONGXUE YAN, XIANLONG FU, XINGFU ZOU, Analysis of an age-structured HIV in-host model with proliferation and two infection modes, European Journal of Applied Mathematics, 2019, 1, 10.1017/S0956792519000275
  • 73. Cameron J. Browne, Xuejun Pan, Hongying Shu, Xiang-Sheng Wang, Resonance of Periodic Combination Antiviral Therapy and Intracellular Delays in Virus Model, Bulletin of Mathematical Biology, 2020, 82, 2, 10.1007/s11538-020-00704-3
  • 74. Yue Gao, Jinliang Wang, Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions, Journal of Mathematical Analysis and Applications, 2020, 488, 1, 124047, 10.1016/j.jmaa.2020.124047
  • 75. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, Applicable Analysis, 2020, 1, 10.1080/00036811.2020.1721471
  • 76. Christian L. Althaus, Anneke S. De Vos, Rob J. De Boer, Reassessing the Human Immunodeficiency Virus Type 1 Life Cycle through Age-Structured Modeling: Life Span of Infected Cells, Viral Generation Time, and Basic Reproductive Number, R0, Journal of Virology, 2009, 83, 15, 7659, 10.1128/JVI.01799-08
  • 77. Dongxue Yan, Xianlong Fu, Asymptotic Analysis of an Age-Structured HIV Infection Model with Logistic Target-Cell Growth and Two Infecting Routes, International Journal of Bifurcation and Chaos, 2020, 30, 04, 2050059, 10.1142/S0218127420500595
  • 78. Peng Wu, Hongyong Zhao, Dynamics of an HIV Infection Model with Two Infection Routes and Evolutionary Competition between Two Viral Strains, Applied Mathematical Modelling, 2020, 10.1016/j.apm.2020.03.040

Reader Comments

your name: *   your email: *  

Copyright Info: 2004, Patrick W. Nelson, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved