
AIMS Mathematics, 2021, 6(1): 420441. doi: 10.3934/math.2021026
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Admissible multivalued hybrid $\mathcal{Z}$contractions with applications
1 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Nigeria
3 Department of Mathematics, COMSATS University, Chak Shahzad, Islamabad, 44000, Pakistan
Received: , Accepted: , Published:
References
1. M. Alansari, S. S. Mohammed, A. Azam, N. Hussain, On Multivalued Hybrid Contractions with Applications. Journal of Function Spaces, J. Funct. Space., 2020 (2020), 112.
2. A. S. Alharbi, H. H. Alsulami, E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Space., 2017 (2017), 17.
3. M. Arshad, A. Shoaib, M. Abbas, A. Azam, Fixed points of a pair of Kannan type mappings on a closed ball in ordered partial metric spaces, Miskolc Math. Notes, 14 (2013), 769784.
4. H. A. S. S. E. N. Aydi, A. Felhi, E. R. D. A. L. Karapinar, F. A. Alojail, Fixed points on quasimetric spaces via simulation functions and consequences, J. Math. Anal., 9 (2018), 1024.
5. A. Azam, N. Mehmood, Multivalued fixed point theorems in tvscone metric spaces, Fixed Point Theory and Applications, 2013 (2013), 184.
6. I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Functional Analysis, 30 (1989), 2637.
7. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133181.
8. V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 3 (1993), 39.
9. N. Bourbaki, Topologie Generale, Herman, Paris, France, 1974.
10. M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two bmetrics. Studia Universitatis BabesBolyai, Mathematica, 4 (2009), 126132.
11. A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29 (2002), 531536.
12. I. C. Chifu, E. Karapınar, Admissible Hybrid ZContractions in bMetric Spaces, Axioms, 9 (2020), 2.
13. S. Czerwik, Contraction mappings in bmetric spaces, Acta Mathematica Informatica Universitatis Ostraviensis, 1 (1993), 511.
14. R. Espinola, W. A. Kirk, Fixed point theorems in Rtrees with applications to graph theory, Topol. Appl., 153 (2006), 10461055.
15. N. Hussain, J. Ahmad, A. Azam, Generalized fixed point theorems for multivalued α  ψcontractive mappings, J. Inequal. Appl., 2014 (2014), 384.
16. N. Hussain, G. Ali, I. Iqbal, B. Samet, The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued FContractions, Mathematics, 8 (2020), 212.
17. N. Hussain, Z. D. Mitrovic, On multivalued weak quasicontractions in bmetric spaces, J. Nonlinear Sci. Appl., 10 (2017), 38153823.
18. N. Hussain, D. Doric, Z. Kadelburg, S. Radenovic, Suzukitype fixed point results in metric type spaces, Fixed Point Theory and Applications, 2012 (2012), 126.
19. N. Hussain, P. Salimi, A. Latif, Fixed point results for single and setvalued α  η  ψcontractive mappings, Fixed Point Theory and Applications, 2013 (2013), 212.
20. I. Iqbal, N. Hussain, M. A. Kutbi, Existence of the solution to variational inequality, optimization problem, and elliptic boundary value problem through revisited best proximity point results, J. Comput. Appl. Math., (2020), 112804.
21. I. Iqbal, N. Hussain, N. Sultana, Fixed Points of Multivalued NonLinear FContractions with Application to Solution of Matrix Equations, Filomat, 31 (2017), 33193333.
22. J. Jachymski, The contraction principle for mappings on a metric space with a graph, P. Am. Math. Soc., 136 (2008), 13591373.
23. E. Karapınar, R. P. Agarwal, Interpolative RusReichĆirić type contractions via simulation functions, Analele Universitatii" Ovidius" ConstantaSeria Matematica, 27 (2019), 137152.
24. E. Karapınar, A. Fulga, New Hybrid Contractions on bMetric Spaces, Mathematics, 7 (2019), 578.
25. E. Karapinar, A short survey on the recent fixed point results on bmetric spaces, Constructive mathematical Analysis, 1 (2018), 1544.
26. F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 11891194.
27. M. A. Kutbi, E. Karapınar, J. Ahmad, A. Azam, Some fixed point results for multivalued mappings in bmetric spaces, J. Inequal. Appl., 2014 (2014), 126.
28. S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475488.
29. J. J. Nieto, R. RodríguezLópez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, English Series, 23 (2007), 22052212.
30. A. C. Ran, M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., (2004), 14351443.
31. B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods and Applications, 47 (2001), 26832693.
32. I. A. Rus, Generalized contractions and applications, Cluj University Press, ClujNapoca, 2001.
33. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α  ψcontractive type mappings, Nonlinear Analysis: Theory, Methods and Applications, 75 (2012), 21542165.
34. S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (2008), 25122520.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)