AIMS Mathematics, 2020, 5(6): 7234-7251. doi: 10.3934/math.2020462.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Positive periodic solution for third-order singular neutral differential equation with time-dependent delay

1 College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
2 School of Physics and Information, Henan Polytechnic University, Jiaozuo 454000, China

In this paper, we investigate a class of third-order singular neutral differential equations with time-dependent delay. Applying Krasnoselskii’s fixed point theorem, we prove the existence results of a positive periodic solution for this neutral equation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords positive periodic solution; neutral operator; singularity; Krasnoselskii’s fixed point theorem; two available operators

Citation: Yun Xin, Hao Wang. Positive periodic solution for third-order singular neutral differential equation with time-dependent delay. AIMS Mathematics, 2020, 5(6): 7234-7251. doi: 10.3934/math.2020462

References

  • 1. R. Agarwal, S. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Acasemic, 2000.
  • 2. A. Ardjouni, A. Djoudi, Existence, uniqueness and positivity of solutions for a neutral nonlinear periodic differential equation, Comput. Appl. Math., 34 (2015), 17-27.
  • 3. T. Candan, Existence of positive periodic solutions of first order neutral differential equations with variable coefficients, Appl. Math. Lett., 52 (2016), 142-148.    
  • 4. Z. Cheng, Q. Yuan, Damped superlinear Duffing equation with strong singularity of repulsive type, J. Fixed Point Theory Appl., 22 (2020), 1-18.    
  • 5. Z. Cheng, F. Li, Weak and strong singularities for second-order nonlinear differential equations with a linear difference operator, J. Fixed. Point Theory Appl., 21 (2019), 1-23.    
  • 6. Z. Cheng, F. Li, S. Yao, Positive solutions for second-order neutral differential equations with time-dependent deviating arguments, Filomat, 33 (2019), 3627-3638.    
  • 7. Z. Cheng, F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), 1-19.    
  • 8. W. Cheung, J. Ren, W. Han, Positive periodic solution of second-order neutral functional differential equations, Nonlinear Anal., 71 (2009), 3948-3955.    
  • 9. J. Chu, P. Torres, M. Zhang, Periodic solution of second order non-autonomous singular dynamical systems, J. Differ. Equations, 239 (2007), 196-212.    
  • 10. J. Chu, Z. Zhou, Positive solutions for singular non-linear third-order periodic boundary value problems, Nonlinear Anal. Theor., 64 (2006), 1528-1542.    
  • 11. B. Du, Y. Liu, I. Abbas, Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks, J. Franklin Inst., 353 (2016), 448-461.    
  • 12. A. Fonda, R. Manásevich, F. Zanolin, Subharmonics solutions for some second order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.    
  • 13. R. Hakl, P. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Equations, 248 (2010), 111-126.    
  • 14. L. Lv, Z. Cheng, Positive periodic solution to superlinear neutral differential equation with time-dependent parameter, Appl. Math. Lett., 98 (2019), 271-277.    
  • 15. R. Ma, R. Chen, Z. He, Positive periodic solutions of second-order differential equations with weak singularities, Appl. Math. Comput., 232 (2014), 97-103.
  • 16. J. Ren, Z. Cheng, S. Siegmund, Neutral operator and neutral differential equation, Abst. Appl. Anal., 2011 (2011), 1-22.
  • 17. J. Ren, S. Siegmund, Y. Chen, Positive periodic solutions for third-order nonlinear differential equations, Electron. J. Differ. Eq., 66 (2011), 1-19.
  • 18. P. Torres, Weak singularities may help periodic solutions to exist, J. Differ. Equations, 232 (2007), 277-284.    
  • 19. D. Wang, Positive periodic solutions for a nonautonomous neutral delay prey-predator model with impulse and Hassell-Varley type functional response, P. Am. Math. Soc., 142 (2014), 623-638.
  • 20. H. Wang, Positive periodic solutions of singular systems with a parameter, J. Differ. Equations, 249 (2010), 2986-3002.    
  • 21. Z. Wang, T. Ma, Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities, Nonlinearity, 25 (2012), 279-307.    
  • 22. J. Wu, Z. Wang, Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 329 (2007), 677-689.    
  • 23. T. Xiang, R. Yuan, Existence of periodic solutions for p-Laplacian neutral functional equation with multiple deviating arguments, Topol. Method. Nonlinear Anal., 37 (2011), 235-258.
  • 24. Y. Xin, H. Liu, Singularity problems to fourth-order Rayleigh equation with time-dependent deviating argument, Adv. Differ. Equ., 368 (2018), 1-15.
  • 25. Y. Xin, H. Liu, Existence of periodic solution for fourth-order generalized neutral p-Laplacian differential equation with attractive and repulsive singularities, J. Inequal. Appl., 259 (2018), 1-18.
  • 26. S. Yao, J. Liu, Study on variable coefficients singular differential equation via constant coefficients differential equation, Bound. Value Probl., 3 (2019), 1-24.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved