Loading [Contrib]/a11y/accessibility-menu.js
Research article

New inequalities via n-polynomial harmonically exponential type convex functions

  • Received: 11 June 2020 Accepted: 25 August 2020 Published: 04 September 2020
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this work we introduced a new class of functions called n-polynomial harmonically exponential type convex and study some of their algebraic properties. Several new inequalities via n-polynomial harmonically exponential type convexity are established. Some special cases for suitable choices of parameters are given in details.

    Citation: Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem. New inequalities via n-polynomial harmonically exponential type convex functions[J]. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440

    Related Papers:

  • In this work we introduced a new class of functions called n-polynomial harmonically exponential type convex and study some of their algebraic properties. Several new inequalities via n-polynomial harmonically exponential type convexity are established. Some special cases for suitable choices of parameters are given in details.


    Theory of convexity have a lot of applications in pure and applied mathematics and played an important and fundamental role in the developments of various branches of engineering, financial mathematics, economics and optimization. In recent years, the concept of convex functions and its variant forms have been extended and generalized using innovative techniques to study complicated problems. It is well known that convexity is closely related to inequality theory.

    A significant class of convex functions, called harmonic convex was introduced by Anderson et al. [2] and İşcan [15] independently. Noor [20,21] have shown that the optimality conditions of the differentiable harmonic convex functions on the harmonic convex set can be expressed by a class of variational inequality, which he called the harmonic variational inequality. Recently Mahir Kadakal and İşcan [24] introduced a generalized form of convexity namely $ n $-polynomial convex function. Noor [4], keeping his work in the field of convex analysis, introduced a new generalized class of convex function called $ n $-polynomial harmonic convex function. Due to widespread views and applications, many mathematicians put an effort, hardworking to collaborate on different ideas and concepts in the field of convex analysis. Many generalizations, variants and extensions for the convexity have attracted the attention of many researchers, see [6,10,18,24].

    After studying literature about convex analysis, motivated and inspired by the ongoing activities and research in this dynamic field, we found out that there exists a special class of function known as exponential convex function and nowadays a lot of peoples are working in this field. Antczak [3] and Dragomir [8] introduced the class of exponential type convexity. After Antczak and Dragomir, Awan et al. [5] studied and investigated a new class of exponentially convex functions. Recently Mahir Kadakal and İşcan introduced a new definition of exponential type convexity in [16]. The fruitful importance of exponential type convexity is used to manipulate for statistical learning, stochastic optimization and sequential prediction (see [1,22,24] and the references therein). Interested readers are referred to [9,11].

    The aim of this paper is to introduce a new class of functions called $ n $-polynomial harmonically exponential type convex and study some of their algebraic properties. Several new inequalities via $ n $-polynomial harmonically exponential type convexity are establish. The interesting techniques and the fruitful ideas of this paper may stimulate further research in this dynamic field. Before we start, we need the following necessary known definitions.

    Let $ \psi: I\rightarrow\Re $ be a real valued function. A function $ \psi $ is said to be convex, if

    $ \begin{equation} \psi\left(t \mu_{1} +\left( 1-t\right) \mu_{2} \right) \leq t \psi\left(\mu_{1} \right) +\left( 1-t\right) \psi\left( \mu_{2} \right) \end{equation} $ (2.1)

    holds for all $ \mu_{1}, \mu_{2}\in I $ and $ t\in[0, 1]. $ Any paper on Hermite inequalities seems to be incomplete without mentioning the well-known Hermite-Hadamard inequality which states: if $ \psi: I\rightarrow\Re $ is a convex function for all $ \mu_{1}, \mu_{2}\in I, $ then

    $ \begin{equation} \psi\biggl(\frac{\mu_{1} + \mu_{2}}{2}\biggl) \leq \frac{1}{\mu_{2} - \mu_{1} }\; \int_{\mu_{1} }^{\mu_{2}} \psi(x) dx \leq\frac{\psi(\mu_{1})+\psi(\mu_{2})}{2}. \end{equation} $ (2.2)

    Since the researchers have shown keen interest in above inequality, as a result various generalizations and improvements have been appeared in the literature. Interested readers can refer to [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23,24,25].

    Definition 2.1. [15] A function $ \psi: H\subseteq(0, +\infty)\rightarrow\Re $ is said to be harmonically convex, if

    $ \begin{equation} \psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\leq t\psi(\mu_{1})+(1-t)\psi(\mu_{2}) \end{equation} $ (2.3)

    holds for all $ \mu_{1}, \mu_{2}\in H $ and $ t\in[0, 1] $.

    For the harmonically convex function, İşcan [15] provided the Hermite-Hadamard type inequality.

    Theorem 2.2. [15] Let $ \psi: H\subseteq(0, +\infty)\rightarrow\Re $ be a harmonically convex function. If $ \psi\in L[\mu_{1}, \mu_{2}] $ for all $ \mu_{1}, \mu_{2}\in H $ with $ \mu_{1} < \mu_{2}, $ then

    $ \begin{equation} \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)\leq\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\leq \frac{\psi(\mu_{1})+\psi(\mu_{2})}{2}. \end{equation} $ (2.4)

    Definition 2.3. [24] A nonnegative function $ \psi: I\rightarrow \Re $ is called $ n $–polynomial convex, if

    $ \begin{equation} \psi\left(t\mu_{1} + \left( 1-t\right) \mu_{2}\right) \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left[1-(1-t)^{i}\right] \psi\left( \mu_{1} \right) + \frac{1}{n}\sum\limits_{i = 1}^{n}\left[1-{t}^{i}\right] \psi\left( \mu_{2}\right) \end{equation} $ (2.5)

    holds for every $ \mu_{1}, \mu_{2}\in I, $ $ n\in\mathbb{N} $ and $ t\in[0, 1] $.

    Definition 2.4. [4] A nonnegative function $ \psi: I\rightarrow [0, +\infty) $ is called $ n $–polynomial harmonically convex, if

    $ \begin{equation} \psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right)\mu_{1}}\bigg)\leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left[1-(1-t)^{i}\right] \psi\left( \mu_{1}\right) + \frac{1}{n}\sum\limits_{i = 1}^{n}\left[1-{t}^{i}\right] \psi\left( \mu_{2}\right) \end{equation} $ (2.6)

    holds for every $ \mu_{1}, \mu_{2}\in I, $ $ n\in\mathbb{N} $ and $ t\in[0, 1] $.

    Remark 1. If we put $ n = 1 $ in definition 2.4, then we get definition 2.1.

    Remark 2. Every nonnegative harmonic convex function is also an $ n $-polynomial harmonic convex function. Indeed for all $ t\in [0, 1] $, it follows from the following inequalities $ t\leq \frac{1}{n}\sum_{i = 1}^{n}[1-(1-t)^{i}] \; \; and \; \; 1-t\leq\frac{1}{n}\sum_{i = 1}^{n}[1-t^{i}] $.

    Motivated by the above results and references, in Section 3 we give the idea and explore some of the algebraic properties of $ n $-polynomial harmonically exponential type convex function. In Section 4, we derive the new version of Hermite-Hadamard inequality by using the new introduced definition. In Section 5, several new special cases are discussed in details for suitable choices of parameters. In the last Section, a brief conclusion is provided as well.

    We are going to introduce a new definition called $ n $–polynomial harmonically exponential type convex function.

    Definition 3.1. A nonnegative real valued function $ \psi: H\subseteq(0, +\infty)\rightarrow [0, +\infty) $ is called $ n $–polynomial harmonically exponential type convex, if

    $ \begin{equation} \psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( \mu_{1}\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( \mu_{2}\right) \end{equation} $ (3.1)

    holds for every $ \mu_{1}, \mu_{2}\in H, $ $ n\in\mathbb{N} $ and $ t\in[0, 1] $.

    Remark 3. Taking $ n = 1 $ in definition 3.1, we obtain the following new definition about harmonically exponential type convex function

    $ \begin{equation} \psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\leq \left( e^{t}-1\right) \psi\left( \mu_{1}\right) + \left( e^{1-t}-1\right) \psi\left( \mu_{2}\right). \end{equation} $ (3.2)

    Example 1. $ \psi(x) = ln (x) $ is harmonically exponential type convex, since it is harmonically convex function for positive values of x.

    Example 2. $ \psi(x) = \sqrt{x} $ is harmonically exponential type convex, since it is harmonically convex function for nonnegative values of x.

    Example 3. $ \psi(x) = 1 / x^{2} $ is harmonically exponential type convex, since it is harmonically convex function for positive values of x.

    Remark 4. If we take $ n = 2 $ in definition 3.1, we obtain the following new definition about 2-polynomial harmonically exponential type convex function

    $ \begin{equation} \psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\leq \left(\frac{e^{2t}-e^{t}}{2}\right) \psi\left( \mu_{1}\right)+ \left(\frac{e^{2(1-t)}-e^{1-t}}{2}\right) \psi\left( \mu_{2}\right). \end{equation} $ (3.3)

    This is a clear advantage of the proposed new definition with respect to other known functions on the topic mentioned above.

    Remark 5. It's easy to show that, if the function $ \psi $ is $ n $–polynomial harmonically convex then $ \psi $ is $ n $–polynomial harmonically exponential type convex. Indeed for all $ t\in[0, 1], $ the following inequalities hold:

    $ \begin{equation*} e^{t}\geq t\;\;\;\mbox{and}\;\;\;e^{1-t}\geq 1-t. \end{equation*} $

    This mean that, the new class of $ n $-polynomial harmonically exponential type convex function is very larger with respect the known class of functions like $ n $-polynomial convex and $ n $-polynomial harmonically convex. This is an advantage of the proposed new definition 3.1.

    Example 4. $ \psi(x) = x^{2}e^{x^{2}} $ is non-decreasing convex function on $ (0, 1) $, so it is harmonic convex function (see [7]). By using Remark 2, it is $ n $-polynomial harmonic convex function and by using Remark 5, it is $ n $-polynomial harmonic exponential type convex function.

    Example 5. $ \psi(x) = e^{x} $ is increasing convex function, so it is harmonic convex function (see [7]). So according to Remark 2 and Remark 5, it is $ n $-polynomial harmonic exponential type convex function.

    Example 6. $ \psi(x) = \sin(-x) $ is non-decreasing convex function on $ (0, \frac{\pi}{2}) $, so it is harmonic convex function $ \forall x\in (0, \frac{\pi}{2}) $ (see [7]). So by using Remark 2 and Remark 5, it is $ n $-polynomial harmonic exponential type convex function.

    Example 7. $ \psi(x) = x $ is non-decreasing convex function on $ (0, \infty) $, so it is harmonic convex function $ \forall x\in (0, \infty) $ (see[7]). So by the following Remark 2 and Remark 5, we get $ \psi(x) $ is $ n $-polynomial harmonic exponential type convex function.

    Example 8. $ \psi(x) = \ln x $ is harmonic convex function on $ (0, \infty) $ (see [7]). So by the following Remark 2 and Remark 5, we get $ \psi(x) $ is $ n $-polynomial harmonic exponential type convex function.

    Now, we will study some of their algebraic properties.

    Theorem 3.2. Let $ \psi, \, \psi_{1}, \, \psi_{2}: H\subseteq(0, +\infty)\rightarrow [0, +\infty). $ If $ \psi, \, \psi_{1} $ and $ \psi_{2} $ are three $ n $–polynomial harmonically exponential type convex functions, then

    (1) $ \psi_{1} + \psi_{2} $ is $ n $–polynomial harmonically exponential type convex function;

    (2) For nonnegative real number $ c, $ $ c\psi $ is $ n $–polynomial harmonically exponential type convex function.

    Proof. (1) Let $ \psi_{1} $ and $ \psi_{2} $ be $ n $-polynomial harmonically exponential type convex function, then

    $ \begin{align*} &\left(\psi_{1} + \psi_{2}\right)\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\\ & = \psi_{1}\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)+\psi_{2}\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg) \\& \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi_{1}\left( \mu_{1}\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi_{1}\left( \mu_{2}\right) \\& +\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi_{2}\left( \mu_{1}\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi_{2}\left( \mu_{2}\right) \\& = \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i}\left[\psi_{1}\left( \mu_1\right)+\psi_{2}\left( \mu_1\right)\right]+\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i}\left[\psi_{1}\left( \mu_2\right)+\psi_{2}\left( \mu_2\right)\right] \\& = \ \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i}\left(\psi_{1} + \psi_{2}\right)\left( \mu_1\right)+\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i}\left(\psi_{1} + \psi_{2}\right)\left( \mu_2\right). \end{align*} $

    $ (2) $ Let $ \psi $ be $ n $–polynomial harmonically exponential type convex function, then

    $ \begin{align*} &\left(c\psi\right)\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg) \\& \leq c\bigg[\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( \mu_1\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( \mu_2\right)\bigg] \\& = \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} c\psi\left( \mu_1\right) + \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i} c\psi\left( \mu_2\right) \\& = \ \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \left(c\psi\right)\left( \mu_1\right) + \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i} \left(c\psi\right)\left( \mu_2\right). \end{align*} $

    Theorem 3.3. Let $ \psi_{1}:H\rightarrow [0, +\infty) $ be harmonically convex function and $ \psi_{2}:[0, +\infty)\rightarrow [0, +\infty) $ is non-decreasing and $ n $-polynomial exponential type convex function. Then the function $ \psi_{2}\circ \psi_{1}:H\rightarrow [0, +\infty) $ is $ n $-polynomial harmonically exponential type convex.

    Proof. For all $ \mu_1, \mu_2 \in H, $ and $ t \in [0, 1], $ we have

    $ \begin{align*} &\left(\psi_{2}\circ \psi_{1}\right)\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg) \\& = \psi_{2}\left( \psi_{1}\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1}}\bigg)\right) \\& \leq\psi_{2}\left(t\psi_{1}\left({\mu_1}\right)+ \left( 1-t\right) \psi_{1}\left({\mu_2}\right)\right) \\& \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i}\psi_{2}\left(\psi_{1}\left( \mu_1\right)\right)+\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i}\psi_{2}\left( \psi_{1}\left( \mu_2\right)\right) \\& = \ \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i}\left(\psi_{2}\circ \psi_{1}\right)\left( \mu_1\right)+\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i}\left(\psi_{2}\circ \psi_{1}\right)\left( \mu_2\right). \end{align*} $

    Theorem 3.4. Let $ 0 < \mu_{1} < \mu_{2}, $ $ \psi_{j}: [\mu_{1}, \mu_{2}]\rightarrow[0, +\infty) $ be a family of $ n $–polynomial harmonically exponential type convex functions and $ \psi(u) = \sup_{j}\psi_{j}(u) $. Then $ \psi $ is an $ n $–polynomial harmonically exponential type convex function and $ U = \{u\in[\mu_{1}, \mu_{2}]:\psi(u) < +\infty\} $ is an interval.

    Proof. Let $ \mu_{1}, \mu_{2}\in U $ and $ t\in[0, 1], $ then

    $ \begin{align*} &\psi\bigg(\frac{\mu_{1}\mu_{2}}{t \mu_{2}+\left( 1-t\right) \mu_{1}}\bigg) \\& = \sup\limits_{j}\psi_{j}\bigg(\frac{\mu_{1}\mu_{2}}{\left(t \mu_{2} +\left( 1-t\right) \mu_{1}\right)}\bigg) \\& \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \sup\limits_{j}\psi_{j}\left( \mu_{1}\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \sup\limits_{j}\psi_{j}\left( \mu_{2}\right) \\& = \ \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( \mu_{1}\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( \mu_{2}\right) \lt +\infty, \end{align*} $

    which completes the proof.

    Theorem 3.5. If the function $ \psi: [\mu_1, \mu_2]\subseteq(0, +\infty)\rightarrow [0, +\infty) $ is $ n $–polynomial harmonically exponential type convex, then $ \psi $ is bounded on $ [\mu_1, \mu_2]. $

    Proof. Let $ L = \max\big\{\psi(\mu_1), \psi(\mu_2)\big\} $ and $ x\in [\mu_1, \mu_2] $ be an arbitrary point. Then there exists $ t\in [0, 1] $ such that $ x = \frac{\mu_{1}\mu_{2}}{t \mu_{2}+\left(1-t\right) \mu_{1}}. $ Thus, since $ e^{t}\leq e $ and $ e^{1-t}\leq e $, we have

    $ \begin{align*} &\psi(x) = \psi\left(\frac{\mu_{1}\mu_{2}}{t \mu_{2}+\left( 1-t\right) \mu_{1}}\right) \\& \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( \mu_1\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( \mu_2\right) \\& \leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} L +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} L \\& \leq \frac{2L}{n}\sum\limits_{i = 1}^{n}\left(e-1\right)^{i} = M. \end{align*} $

    We have shown that $ \psi $ is bounded above from real number $ M. $ Interested reader can also prove the fact that $ \psi $ is bounded below using the same idea as in Theorem 2.4 in [16].

    Remark 6. Interested readers can find many other nice properties of this new class of functions. We omit here the details.

    The purpose of this section is to derive a new version of Hermite-Hadamard type via $ n $-polynomial harmonically exponential type convexity.

    Theorem 4.1. Let $ \psi:[\mu_{1}, \mu_{2}]\rightarrow[0, +\infty) $ be an $ n $-polynomial harmonically exponential type convex function. If $ \psi\in L[\mu_{1}, \mu_{2}], $ then

    $ \begin{equation} \frac{n}{2\sum\limits_{i = 1}^{n}\left( \sqrt{e}-1\right)^{i}}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+ \mu_{2}}\bigg)\leq \frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx \end{equation} $ (4.1)
    $ \begin{equation*} \leq \bigg[\frac{\psi\left( \mu_{1}\right)+\psi\left( \mu_{2}\right)}{n}\bigg]\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{equation*} $

    Proof. Since $ \psi $ is $ n $-polynomial harmonically exponential type convex function, we have

    $ \begin{equation*} \psi\bigg(\frac{xy}{t y +\left( 1-t\right) x}\bigg)\leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( x\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( y\right), \end{equation*} $

    which lead to

    $ \begin{equation*} \psi\bigg(\frac{2xy}{x + y}\bigg)\leq \frac{1}{n}\sum\limits_{i = 1}^{n}\left( \sqrt{e}-1\right)^{i} \psi\left( x\right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( \sqrt{e}-1\right)^{i} \psi\left( y\right). \end{equation*} $

    Using the change of variables, we get

    $ \begin{equation*} \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+ \mu_{2}}\bigg)\leq \frac{1}{n}\sum\limits_{i = 1}^{n}\bigg[\left( \sqrt{e}-1\right)^{i}\bigg]\bigg[\psi\bigg(\frac{\mu_{1} \mu_{2}}{\left(t \mu_{2} +\left( 1-t\right) \mu_{1} \right)}\bigg)+\psi\bigg(\frac{\mu_{1}\mu_{2}}{\left(t \mu_{1} +\left( 1-t\right) \mu_{2}\right)}\bigg)\bigg]. \end{equation*} $

    Integrating with respect to $ t $ on $ [0, 1] $ the above inequality, we obtain

    $ \begin{equation*} \frac{n}{2\sum\limits_{i = 1}^{n}\left( \sqrt{e}-1\right)^{i}}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1} + \mu_{2}}\bigg)\leq \frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx, \end{equation*} $

    which completes the left side inequality. For the right side inequality, changing the variable of integration as $ x = \frac{\mu_{1}\mu_{2}}{t \mu_{2}+\left(1-t\right)\mu_{1} } $ and using Definition 3.1 for the function $ \psi $, we have

    $ \begin{align*} &\frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1} }^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx \\& = \int_{0}^{1}\psi\bigg(\frac{\mu_{1} \mu_{2}}{t \mu_{2} +\left( 1-t\right) \mu_{1} }\bigg)dt \\& \leq \int_{0}^{1}\bigg[\frac{1}{n}\sum\limits_{i = 1}^{n}\left( e^{t}-1\right)^{i} \psi\left( \mu_{1} \right) +\frac{1}{n}\sum\limits_{i = 1}^{n} \left( e^{1-t}-1\right)^{i} \psi\left( \mu_{2}\right)\bigg]dt \\& = \frac{\psi\left( \mu_{1} \right)}{n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\left( e^{t}-1\right)^{i}dt + \frac{\psi\left(\mu_{2}\right)}{n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\left( e^{1-t}-1\right)^{i}dt \\& = \bigg[\frac{\psi\left( \mu_{1} \right)+\psi\left( \mu_{2}\right)}{n}\bigg]\sum\limits_{i = 1}^{n}[e-2]^{i}, \end{align*} $

    which completes the proof.

    Corollary 1. Choosing $ n = 1 $ in Theorem 4.1, then

    $ \begin{equation*} \frac{1}{2\left( \sqrt{e}-1\right)}\psi\bigg(\frac{2\mu_{1} \mu_{2}}{\mu_{1} + \mu_{2}}\bigg)\leq \frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1} }^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx \leq (e-2)\big[\psi\left( \mu_{1} \right)+\psi\left( \mu_{2}\right)\big]. \end{equation*} $

    In order to obtain some new results using $ n $–polynomial harmonically exponential type convex function, we need the following lemma:

    Lemma 5.1. [4] Let $ \psi:[\mu_{1}, \mu_{2}]\subseteq(0, +\infty)\rightarrow \Re $ be a differentiable function and $ \rho, \sigma \in[0, 1] $. If $ \psi'\in L[\mu_{1}, \mu_{2}], $ then the following identity holds:

    $ \begin{align} &\frac{\rho \psi(\mu_{1})+ \sigma \psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1} }^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx \\& = \frac{\mu_{1} \mu_{2}(\mu_{2}-\mu_{1})}{4}\int_{0}^{1}\bigg[\frac{4(1-\rho-t)}{((1-t)\mu_{2}+(1+t)\mu_{1} )^{2}}\psi'\bigg(\frac{2\mu_{1} \mu_{2}}{(1-t)\mu_{2}+(1+t)\mu_{1} }\bigg) \\& +\frac{4(\sigma-t)}{(t\mu_{1}+(2-t)\mu_{2})^{2}} \psi^{'}\bigg(\frac{2\mu_{1}\mu_{2}}{t\mu_{1} +(2-t)\mu_{2}}\bigg)\bigg]dt. \end{align} $ (5.1)

    For simplicity, we denote

    $ \begin{equation} A_{\mu_{1}, \mu_{2}} = (1-t)\mu_{2} + (1+t)\mu_{1} \;\;\; \mbox{and} \;\;\; B_{\mu_{1}, \mu_{2}} = t\mu_{1}+(2-t)\mu_{2}. \end{equation} $ (5.2)

    The following special functions will be used in sequel:

    $ \begin{equation*} \Gamma(\mu) = \int_{0}^{+\infty}e^{-t}t^{\mu-1}dt, \;\;\;\mu \gt 0; \end{equation*} $
    $ \begin{equation*} \beta(\mu_{1}, \mu_{2}) = \int_{0}^{1}t^{\mu_{1}-1}(1-t)^{\mu_{2}-1}dt, \;\;\;\mu_{1}, \mu_{2} \gt 0; \end{equation*} $
    $ \begin{equation*} \beta(\mu_{1}, \mu_{2}) = \frac{\Gamma(\mu_{1})\Gamma(\mu_{2})}{\Gamma(\mu_{1}+\mu_{2})}, \;\;\;\mu_{1}, \mu_{2} \gt 0; \end{equation*} $
    $ \begin{equation*} _{2}F_{1}(\mu_{1}, \mu_{2};\mu_{3};\mu) = \frac{1}{\beta(\mu_{2}, \mu_{3}-\mu_{2})}\int_{0}^{1}t^{\mu_{2}-1}(1-t)^{\mu_{3}-\mu_{2}-1}(1-\mu t)^{-\mu_{1}}dt, \end{equation*} $

    where $ \mu_{3} > \mu_{2} > 0 $ and $ |\mu| < 1. $

    Theorem 5.2. Let $ \psi:[\mu_{1}, \mu_{2}]\subseteq(0, +\infty)\rightarrow \Re $ be a differentiable function such that $ \psi'\in L[\mu_{1}, \mu_{2}] $ and $ \rho, \sigma \in [0, 1]. $ If the function $ \vert \psi'\vert^{q} $ is an $ n $–polynomial harmonically exponential type convex, then for $ p, q > 1 $ with $ \frac{1}{p}+ \frac{1}{q} = 1 $, we have

    $ \begin{align} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma \psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \\& \leq \mu_{1}\mu_{2}(\mu_{2}-\mu_{1}) \\& \times\bigg[\varphi_{1}^{\frac{1}{p}}\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\varphi_{2}^{\frac{1}{p}}\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \end{align} $ (5.3)

    where

    $ \begin{equation*} \varphi_{1} = \int_{0}^{1}\vert 1-\rho-t\vert^{p}dt = \frac{(1-\rho)^{p+1}+\rho^{p+1}}{p+1}, \end{equation*} $
    $ \begin{equation*} \varphi_{2} = \int_{0}^{1}\vert \sigma-t\vert^{p}dt = \frac{(1-\sigma)^{p+1}+\sigma^{p+1}}{p+1}, \end{equation*} $
    $ \begin{equation*} C_{1} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2q}}(e^{1-t}-1)^{i}dt, \;\;\;C_{2} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2q}}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} C_{3} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2q}}(e^{2-t}-1)^{i}dt, \;\;\;C_{4} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2q}}(e^{t}-1)^{i}dt, \end{equation*} $

    and $ A_{\mu_{1}, \mu_{2}}, B_{\mu_{1}, \mu_{2}} $ are defined from (5.2).

    Proof. From Lemma 5.1, Hölder's inequality, $ n $–polynomial harmonically exponential type convexity of $ \vert \psi'\vert^{q} $ and properties of modulus, we have

    $ \begin{align*} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma\psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4}\bigg[\int_{0}^{1}\bigg\vert\frac{4(1-\rho-t)}{((1-t)\mu_{2}+(1+t)\mu_{1})^{2}}\bigg\vert \bigg\vert \psi'\bigg(\frac{2\mu_{1}\mu_{2}}{(1-t)\mu_{2}+(1+t)\mu_{1}}\bigg)\bigg\vert dt \\& +\int_{0}^{1}\bigg\vert\frac{4(\sigma-t)}{(t\mu_{1}+(2-t)\mu_{2})^{2}}\bigg\vert \bigg\vert \psi'\bigg(\frac{2\mu_{1}\mu_{2}}{t\mu_{1}+(2-t)\mu_{2}}\bigg)\bigg\vert dt\bigg] \\& \leq \mu_{1}\mu_{2}(\mu_{2}-\mu_{1})\bigg\{\bigg(\int_{0}^{1}|1-\rho-t|^{p}dt\bigg)^{\frac{1}{p}} \\& \times\bigg[\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2q}}\bigg(\frac{1}{2n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i} \vert \psi'(\mu_{1})\vert^{q} +\frac{1}{2n}\sum\limits_{i = 1}^{n} \left( e^{1+t}-1\right)^{i} \vert \psi'(\mu_{2})\vert^{q}\bigg)dt\bigg]^{\frac{1}{q}} \\& +\bigg(\int_{0}^{1}|\sigma-t|^{p}dt\bigg)^{\frac{1}{p}} \\& \times\bigg[\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2q}}\bigg(\frac{1}{2n}\sum\limits_{i = 1}^{n}\left( e^{2-t}-1\right)^{i} \vert \psi'(\mu_{1})\vert^{q} +\frac{1}{2n}\sum\limits_{i = 1}^{n} \left( e^{t}-1\right)^{i} \vert \psi'(\mu_{2})\vert^{q}\bigg)dt\bigg]^{\frac{1}{q}}\bigg\} \\& = \frac{\mu_{1} \mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\varphi_{1}^{\frac{1}{p}}\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\varphi_{2}^{\frac{1}{p}}\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \end{align*} $

    which completes the proof.

    Corollary 2. Taking $ n = 1 $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma \psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1} }^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \notag\\& \leq \mu_{1}\mu_{2}(\mu_{2}-\mu_{1} ) \\& \times\bigg[\varphi_{1}^{\frac{1}{p}}\left(D_{1}\vert \psi'(\mu_{1})\vert^{q}+ D_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\varphi_{2}^{\frac{1}{p}}\left(D_{3}\vert \psi'(\mu_{1})\vert^{q}+ D_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} D_{1} = \frac{1}{2}\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2q}}(e^{1-t}-1)dt, \;\;\;D_{2} = \frac{1}{2}\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2q}}(e^{1+t}-1)dt, \end{equation*} $
    $ \begin{equation*} D_{3} = \frac{1}{2}\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2q}}(e^{2-t}-1)dt, \;\;\;D_{4} = \frac{1}{2}\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2q}}(e^{t}-1)dt. \end{equation*} $

    Corollary 3. Taking $ \rho = \sigma $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert\rho\frac{\psi(\mu_{1})+ \psi(\mu_{2})}{2}+ (1-\rho)\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1} + \mu_{2}}\bigg)-\frac{\mu_{1} \mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \notag\\& \leq \mu_{1} \mu_{2}(\mu_{2}-\mu_{1} )\varphi^{\frac{1}{p}} \\& \times\bigg[\left(C_{1}\vert \psi'(\mu_{1} )\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \end{align*} $

    where $ \varphi_{1} = \varphi_{2} = \varphi. $

    Corollary 4. Choosing $ \rho = \sigma = 0 $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{2\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1} }\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{\sqrt[p]{p+1}} \\& \times\bigg[\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg]. \end{align*} $

    Corollary 5. Choosing $ \rho = \sigma = \frac{1}{2} $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert\frac{ \psi(\mu_{1})+ \psi(\mu_{2})}{2}+ \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{2\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \notag\\& \leq \mu_{1} \mu_{2}(\mu_{2}-\mu_{1})\sqrt[p]{\frac{4}{p+1}} \\& \times\bigg[\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg]. \end{align*} $

    Corollary 6. Taking $ \rho = \sigma = \frac{1}{3} $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert\frac{ \psi(\mu_{1})+ \psi(\mu_{2})}{2}+ 2\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{3\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \\& \leq 3\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})\sqrt[p]{4\Bigg(\frac{\left(\frac{2}{3}\right)^{p+1}+\left(\frac{1}{3}\right)^{p+1}}{p+1}\Bigg)} \\& \times\bigg[\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg]. \end{align*} $

    Corollary 7. Taking $ \rho = \sigma = 1 $ in Theorem 5.2, then

    $ \begin{align*} &\bigg\vert\frac{\psi(\mu_{1})+ \psi(\mu_{2})}{2}-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{\sqrt[p]{p+1}} \\& \times\bigg[\left(C_{1}\vert \psi'(\mu_{1})\vert^{q}+ C_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} +\left(C_{3}\vert \psi'(\mu_{1})\vert^{q}+ C_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg]. \end{align*} $

    Theorem 5.3. Let $ \psi:[\mu_{1}, \mu_{2}]\subseteq(0, +\infty)\rightarrow \Re $ be a differentiable function such that $ \psi'\in L[\mu_{1}, \mu_{2}] $ and $ \rho, \sigma \in [0, 1]. $ If the function $ \vert \psi'\vert^{q} $ is an $ n $-polynomial harmonically exponential type convex, then for $ p, q > 1 $ with $ \frac{1}{p}+ \frac{1}{q} = 1 $, we have

    $ \begin{align} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma\psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(C_{5}\vert \psi'(\mu_{1})\vert^{q}+ C_{6}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(C_{7}\vert \psi'(\mu_{1})\vert^{q}+ C_{8}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \end{align} $ (5.4)

    where

    $ \begin{equation*} C_{5} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-\rho-\sigma\vert^{q}(e^{1-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} C_{6} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-\rho-\sigma\vert^{q}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} C_{7} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert \sigma-t\vert^{q}(e^{2-t}-1)^{i}dt, \;\;\;C_{8} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert \sigma-t\vert^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    Proof. Applying Lemma 5.1, Hölder's inequality, $ n $-polynomial harmonically exponential type convexity of $ \vert \psi'\vert^{q} $ and properties of modulus, we have

    $ \begin{align*} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma \psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4}\bigg[\int_{0}^{1}\bigg\vert\frac{4(1-\rho-t)}{((1-t)\mu_{2}+(1+t)\mu_{1})^{2}}\bigg\vert \bigg\vert \psi'\bigg(\frac{2\mu_{1}\mu_{2}}{(1-t)\mu_{2}+(1+t)\mu_{1}}\bigg)\bigg\vert dt \\& +\int_{0}^{1}\bigg\vert\frac{4(\sigma-t)}{(t\mu_{1}+(2-t)\mu_{2})^{2}}\bigg\vert \bigg\vert \psi'\bigg(\frac{2\mu_{1}\mu_{2}}{t\mu_{1}+(2-t)\mu_{2}}\bigg)\bigg\vert dt\bigg] \\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4}\bigg\{4\bigg(\int_{0}^{1}\frac{1}{A_{\mu_{1}, \mu_{2}}^{2p}}dt\bigg)^{\frac{1}{p}} \\& \times\bigg[\int_{0}^{1}\vert 1-\rho-\sigma \vert^{q}\bigg(\frac{1}{2n}\sum\limits_{i = 1}^{n}\left( e^{1-t}-1\right)^{i} \vert \psi'(\mu_{1})\vert^{q} +\frac{1}{2n}\sum\limits_{i = 1}^{n} \left( e^{1+t}-1\right)^{i} \vert \psi'(\mu_{2})\vert^{q}\bigg)dt\bigg]^{\frac{1}{q}} \\& +4\bigg(\int_{0}^{1}\frac{1}{B_{\mu_{1}, \mu_{2}}^{2p}}dt\bigg)^{\frac{1}{p}} \\& \times\bigg[\int_{0}^{1}\vert\sigma-t\vert^{q}\bigg(\frac{1}{2n}\sum\limits_{i = 1}^{n}\left( e^{2-t}-1\right)^{i} \vert \psi'(\mu_{1})\vert^{q} +\frac{1}{2n}\sum\limits_{i = 1}^{n} \left( e^{t}-1\right)^{i} \vert \psi'(\mu_{2})\vert^{q}\bigg)dt\bigg]^{\frac{1}{q}}\bigg\} \\& = \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \notag\\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(C_{5}\vert \psi'(\mu_{1})\vert^{q}+ C_{6}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(C_{7}\vert \psi'(\mu_{1})\vert^{q}+ C_{8}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \end{align*} $

    which completes the proof.

    Corollary 8. Taking $ n = 1 $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert\frac{\rho \psi(\mu_{1})+ \sigma\psi(\mu_{2})}{2}+ \frac{2-\rho-\sigma}{2}\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \notag\\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(D_{5}\vert \psi'(\mu_{1})\vert^{q}+ D_{6}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(D_{7}\vert \psi'(\mu_{1})\vert^{q}+ D_{8}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} D_{5} = \frac{1}{2}\int_{0}^{1}\vert 1-\rho-\sigma\vert^{q}(e^{1-t}-1)dt, \end{equation*} $
    $ \begin{equation*} D_{6} = \frac{1}{2}\int_{0}^{1}\vert 1-\rho-\sigma\vert^{q}(e^{1+t}-1)dt, \end{equation*} $
    $ \begin{equation*} D_{7} = \frac{1}{2}\int_{0}^{1}\vert \sigma-t\vert^{q}(e^{2-t}-1)dt, \;\;\;D_{8} = \frac{1}{2}\int_{0}^{1}\vert \sigma-t\vert^{q}(e^{t}-1)dt. \end{equation*} $

    Corollary 9. Taking $ \rho = \sigma $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert\rho\frac{\psi(\mu_{1})+ \psi(\mu_{2})}{2}+ (1-\rho)\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \notag\\& \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(E_{1}\vert \psi'(\mu_{1})\vert^{q}+ E_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(E_{3}\vert \psi'(\mu_{1})\vert^{q}+ E_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} E_{1} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-2\rho\vert^{q}(e^{1-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} E_{2} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-2\rho\vert^{q}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} E_{3} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert \rho-t\vert^{q}(e^{2-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} E_{4} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert \rho-t\vert^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    Corollary 10. Taking $ \rho = \sigma = 0 $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(E_{5}\vert \psi'(\mu_{1})\vert^{q}+ E_{6}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(E_{7}\vert \psi'(\mu_{1})\vert^{q}+ E_{8}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} E_{5} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1-t}-1)^{i}dt, \;\;\;E_{6} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} E_{7} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}t^{q}(e^{2-t}-1)^{i}dt, \;\;\;E_{8} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}t^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    Corollary 11. Choosing $ \rho = \sigma = \frac{1}{2} $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert\frac{ \psi(\mu_{1})+ \psi(\mu_{2})}{2}+ \psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{2\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{2} \\& \times\bigg[\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(E_{9}\vert \psi'(\mu_{1})\vert^{q}+ E_{10}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} E_{9} = \frac{1}{2^{q+1}n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-2t\vert^{q}(e^{2-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} E_{10} = \frac{1}{2^{q+1}n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-2t\vert^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    Corollary 12. Choosing $ \rho = \sigma = \frac{1}{3} $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert\frac{ \psi(\mu_{1})+ \psi(\mu_{2})}{2}+ 2\psi\bigg(\frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\bigg)-\frac{3\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{3\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(G_{1}\vert \psi'(\mu_{1})\vert^{q}+ G_{2}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(G_{3}\vert \psi'(\mu_{1})\vert^{q}+ G_{4}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} G_{1} = \frac{1}{3^{q}2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1-t}-1)^{i}dt, \;\;\;G_{2} = \frac{1}{3^{q}2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} G_{3} = \frac{1}{3^{q}2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-3t\vert^{q}(e^{2-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} G_{4} = \frac{1}{3^{q}2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-3t\vert^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    Corollary 13. Taking $ \rho = \sigma = 1 $ in Theorem 5.3, then

    $ \begin{align*} &\bigg\vert\frac{\psi(\mu_{1})+ \psi(\mu_{2})}{2}-\frac{\mu_{1}\mu_{2}}{\mu_{2}-\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}\frac{\psi(x)}{x^{2}}dx\bigg\vert \leq \frac{\mu_{1}\mu_{2}(\mu_{2}-\mu_{1})}{4} \\& \times\bigg[\frac{4}{(\mu_{1}+\mu_{2})^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{\mu_{1}+\mu_{2}}\right)\bigg)^{\frac{1}{p}}\left(G_{5}\vert \psi'(\mu_{1})\vert^{q}+ G_{6}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}} \notag\\& +\frac{1}{\mu_{1}^{2}}\bigg(\, _{2}F_{1}\left(2p, 1;2;\frac{\mu_{1}-\mu_{2}}{2\mu_{1}}\right)\bigg)^{\frac{1}{p}}\left(G_{7}\vert \psi'(\mu_{1})\vert^{q}+ G_{8}\vert \psi'(\mu_{2})\vert^{q}\right)^{\frac{1}{q}}\bigg], \notag \end{align*} $

    where

    $ \begin{equation*} G_{5} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1-t}-1)^{i}dt, \;\;\;G_{6} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}(e^{1+t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} G_{7} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-t\vert^{q}(e^{2-t}-1)^{i}dt, \end{equation*} $
    $ \begin{equation*} G_{8} = \frac{1}{2n}\sum\limits_{i = 1}^{n}\int_{0}^{1}\vert 1-t\vert^{q}(e^{t}-1)^{i}dt. \end{equation*} $

    In this section, we recall the following special means for two positive real numbers $ \mu_{1}, \mu_{2} $ where $ \mu_{1} < \mu_{2} $:

    (1) The arithmetic mean

    $ \begin{equation*} A = A(\mu_{1}, \mu_{2}) = \frac{\mu_{1}+\mu_{2}}{2}. \end{equation*} $

    (2) The geometric mean

    $ \begin{equation*} G = G(\mu_{1}, \mu_{2}) = \sqrt{\mu_{1}\mu_{2}}. \end{equation*} $

    (3) The harmonic mean

    $ \begin{equation*} H = H(\mu_{1}, \mu_{2}) = \frac{2\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}. \end{equation*} $

    (4) The Logarithmic mean

    $ \begin{equation*} L = L(\mu_{1}, \mu_{2}) = \frac{\mu_{2}-\mu_{1}}{\ln \mu_{2}-\ln \mu_{1}}. \end{equation*} $

    (5) The p-Logarithmic mean

    $ \begin{equation*} L_{p} = L_{p}(\mu_{1}, \mu_{2}) = \bigg(\frac{\mu_{2}^{p+1}-\mu_{1}^{p+1}}{(p+1)(\mu_{2}-\mu_{1})}\bigg)^{\frac{1}{p}}, \;\;\;\; p\in\Re -\{-1, 0\}. \end{equation*} $

    (6) The identric mean

    $ \begin{equation*} I = I(\mu_{1}, \mu_{2}) = \frac{1}{e}\bigg(\frac{\mu_{2}^{\mu_{2}}}{\mu_{1}^{\mu_{1}}}\bigg)^{\frac{1}{\mu_{2}-\mu_{1}}}. \end{equation*} $

    These means have a lot of applications in areas and different type of numerical approximations. However, the following simple relationship are known in the literature.

    $ \begin{equation*} H(\mu_{1}, \mu_{2})\leq G(\mu_{1}, \mu_{2})\leq L(\mu_{1}, \mu_{2})\leq I(\mu_{1}, \mu_{2})\leq A(\mu_{1}, \mu_{2}). \end{equation*} $

    Proposition 1. Let $ 0 < \mu_{1} < \mu_{2} $. Then we get the following inequality

    $ \begin{equation} \frac{n}{2\sum\limits_{i = 1}^{n}\left(\sqrt e-1\right)^{i}}H(\mu_{1}, \mu_{2})\leq \frac{G^{2}(\mu_{1}, \mu_{2})}{L(\mu_{1}, \mu_{2})} \leq A(\mu_{1}, \mu_{2})\frac{2}{n}\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{equation} $ (6.1)

    Proof. Taking $ \psi(x) = x $ for $ x > 0 $ in Theorem 4.1, then inequality (6.1) is easily captured.

    Proposition 2. Let $ 0 < \mu_{1} < \mu_{2} $. Then we get the following inequality

    $ \begin{equation} \frac{n}{2\sum_{i = 1}^{n}\left(\sqrt e-1\right)^{i}}H^{2}(\mu_{1}, \mu_{2})\leq G^{2}(\mu_{1}, \mu_{2}) \leq A(\mu_{1}^{2}, \mu_{2}^{2})\frac{2}{n}\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{equation} $ (6.2)

    Proof. Taking $ \psi(x) = x^{2} $ for $ x > 0 $ in Theorem 4.1, then inequality (6.2) is easily captured.

    Proposition 3. Let $ 0 < \mu_{1} < \mu_{2} $. Then we get the following inequality

    $ \begin{equation} \frac{n}{2\sum_{i = 1}^{n}\left(\sqrt e-1\right)^{i}}H(\mu_{1}, \mu_{2})\leq I(\mu_{1}, \mu_{2}) \leq G(\mu_{1}, \mu_{2})\frac{2}{n}\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{equation} $ (6.3)

    Proof. Taking $ \psi(x) = \ln x $ for $ x > 0 $ in Theorem 4.1, then inequality (6.3) is easily captured.

    Proposition 4. Let $ 0 < \mu_{1} < \mu_{2} $. Then we get the following inequality

    $ \begin{align} &\frac{n}{2\sum_{i = 1}^{n}\left(\sqrt e-1\right)^{i}}H^{2}(\mu_{1}, \mu_{2})\ln H(\mu_{1}, \mu_{2}) \\& \;\;\;\;\;\;\;\;\;\;\;\;\; \leq G^{2}(\mu_{1}, \mu_{2})\ln I(\mu_{1}, \mu_{2}) \leq A(\mu_{1}^{2}\ln \mu_{1}, \mu_{2}^{2}\ln \mu_{2})\frac{2}{n}\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{align} $ (6.4)

    Proof. Taking $ \psi(x) = x^{2}\ln x $ for $ x > 0 $ in Theorem 4.1, then inequality (6.4) is easily captured.

    Proposition 5. Let $ 0 < \mu_{1} < \mu_{2} $. Then we get the following inequality

    $ \begin{equation} \frac{n}{2\sum_{i = 1}^{n}\left(\sqrt e-1\right)^{i}}H^{p+2}(\mu_{1}, \mu_{2})\leq G^{2}(\mu_{1}, \mu_{2})L_{p}^{p}(\mu_{1}, \mu_{2}) \leq A(\mu_{1}^{p+2}, \mu_{2}^{p+2})\frac{2}{n}\sum\limits_{i = 1}^{n}[e-2]^{i}. \end{equation} $ (6.5)

    Proof. Taking $ \psi(x) = x^{p+2} $ for $ x > 0 $ in Theorem 4.1, then inequality (6.5) is easily captured.

    We have introduced and investigated some algebraic properties of a new class of functions namely $ n $-polynomial harmonically exponential type convex. We showed that this class of functions had some nice properties, which other convex functions had as well. We proved that our new class of $ n $-polynomial harmonically exponential type convex function is very larger with respect to the known class of functions, like $ n $-polynomial convex and $ n $-polynomial harmonically convex. New version of Hermite-Hadamard type inequality and an integral identity for the differentiable functions are obtained. For different choices of two parameters $ \rho $ and $ \sigma $ some special cases from our results are given. In recent years, many researchers put the effort into the theory of inequalities to bring a new dimension to mathematical analysis and applied mathematics with different features in the literature. Due to widespread views and applications, the theory of inequalities has become an attractive, interesting and absorbing field for the researchers. It is high time to find the applications of these inequalities along with efficient numerical methods. We believe that our new class of functions will have very deep research in this fascinating field of inequalities and also in pure and applied sciences. The interesting techniques and fruitful ideas of this paper can be extended on the co-ordinates along with fractional calculus. In future our goal is that we will continue our research work in this direction furthermore.

    The research of the author Saad Ihsan Butt has been fully supported by H.E.C. Pakistan under NRPU project 7906.

    The authors declare no conflict of interest.



    [1] G. Alirezaei, R. Mahar, On exponentially concave functions and their impact in information theory, Information Theory and Applications Workshop (ITA), San Diego, CA, 2018, 1-10, doi: 10.1109/ITA.2018.8503202.
    [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016
    [3] T. Antczak, On (p, r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.
    [4] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125.
    [5] M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
    [6] I. A. Baloch, Y. M. Chu, Petrovíc-type inequalities for harmonic h-convex functions, J. Funct. Spaces., 2020, Article ID 3075390 (2020).
    [7] I. A. Baloch, M. D. L. Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, I. J. Anal. Appl., 17 (2019), 722-733.
    [8] S. S. Dragomir, I. Gomm, Some Hermite-Hadamard's inequality functions whose exponentials are convex, Babes Bolyai math., 60 (2015), 527-534.
    [9] S. I. Butt, M. Nadeem, G. Farid, Caputo fractional derivatives via exponential (s, m) convex functions Eng. Appl. Sci., 3 (2020), 32-39.
    [10] G. Farid, X, Qiang, S. B. Akbar, Generalized fractional integrals inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 70 (2020).
    [11] G. Farid, S. Mehmood, K. A. Khan, Fractional integrals inequalities for exponentially m-convex functions, Open. J. Math. Sci., 4 (2020), 78-85. doi: 10.30538/oms2020.0097
    [12] G. Farid, S. Mehmood, K. A. Khan, et al. New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci., 3 (2020), 45-55.
    [13] A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658
    [14] A. Iqbal, M. A. Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020, Article ID 9845407 (2020).
    [15] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
    [16] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1-9. doi: 10.1186/s13660-019-2265-6
    [17] M. A. Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of HermiteHadamard inequalities and their generalizations, J. Funct. Spaces, 2018, Article ID 6928130 (2018).
    [18] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019, Article ID 6926107 (2019).
    [19] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019, Article ID 317 (2019).
    [20] M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inf. Sci., 10 (2016), 1811-1814. doi: 10.18576/amis/100522
    [21] M. A. Noor, K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Inter. J. Anal. App., 12 (2016), 10-14.
    [22] S. Pal, T. K. L. Wong, On exponentially concave functions and a new information geometry Annals. prob., 46 (2018), 1070-1113.
    [23] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [24] T. Toplu, M. Kadakal, Í. Íşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
    [25] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450.
  • This article has been cited by:

    1. Saad Ihsan Butt, Saima Rashid, Muhammad Tariq, Miao-Kun Wang, Douadi Drihem, Novel Refinements via n –Polynomial Harmonically s –Type Convex Functions and Application in Special Functions, 2021, 2021, 2314-8888, 1, 10.1155/2021/6615948
    2. Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Hijaz Ahmad, Taher A. Nofal, Gangadharan Murugusundaramoorthy, Hermite–Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity and Applications, 2021, 2021, 2314-8888, 1, 10.1155/2021/5533491
    3. Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen, Certain exponential type $ m $-convexity inequalities for fractional integrals with exponential kernels, 2022, 7, 2473-6988, 6311, 10.3934/math.2022351
    4. LEI XU, SHUHONG YU, TINGSONG DU, PROPERTIES AND INTEGRAL INEQUALITIES ARISING FROM THE GENERALIZED n-POLYNOMIAL CONVEXITY IN THE FRAME OF FRACTAL SPACE, 2022, 30, 0218-348X, 10.1142/S0218348X22500840
    5. Saad Ihsan Butt, Hüseyin Budak, Muhammad Tariq, Muhammad Nadeem, Integral inequalities for n ‐polynomial s ‐type preinvex functions with applications , 2021, 44, 0170-4214, 11006, 10.1002/mma.7465
    6. Saad Ihsan BUTT, Muhammad NADEEM, Muhammad TARİQ, Adnan ASLAM, New integral type inequalities via Raina-convex functions and its applications, 2021, 70, 1303-5991, 1011, 10.31801/cfsuasmas.848853
    7. Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639
    8. Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon, On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions, 2022, 7, 2473-6988, 14282, 10.3934/math.2022787
    9. Tao Yan, Ghulam Farid, Ayşe Kübra Demirel, Kamsing Nonlaopon, Sun Young Cho, Further on Inequalities for α , h − m -Convex Functions via k -Fractional Integral Operators, 2022, 2022, 2314-4785, 1, 10.1155/2022/9135608
    10. Imran Abbas Baloch, Aqeel Ahmad Mughal, Absar Ul Haq, Kamsing Nonlaopon, Some Inequalities Related to Jensen-Type Results with Applications, 2022, 14, 2073-8994, 1585, 10.3390/sym14081585
    11. Saad Ihsan Butt, Artion Kashuri, Muhammad Tariq, Jamshed Nasir, Adnan Aslam, Wei Gao, n–polynomial exponential type p–convex function with some related inequalities and their applications, 2020, 6, 24058440, e05420, 10.1016/j.heliyon.2020.e05420
    12. Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322
    13. Saad Ihsan Butt, Miguel Vivas-Cortez, Hira Inam, Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications, 2024, 30, 1387-3954, 385, 10.1080/13873954.2024.2348156
    14. Abdul Wakil Baidar, Zeynep Şanlı, Mehmet Kunt, Some integral inequalities via new generalized harmonically convexity, 2023, 46, 0170-4214, 17226, 10.1002/mma.9496
    15. Asif Ali Shaikh, Evren Hincal, Sotiris K. Ntouyas, Jessada Tariboon, Muhammad Tariq, Some Hadamard-Type Integral Inequalities Involving Modified Harmonic Exponential Type Convexity, 2023, 12, 2075-1680, 454, 10.3390/axioms12050454
    16. Saad Ihsan Butt, Muhammad Umar, Dawood Khan, Youngsoo Seol, Sanja Tipurić-Spužević, Hermite–Hadamard-Type Inequalities for Harmonically Convex Functions via Proportional Caputo-Hybrid Operators with Applications, 2025, 9, 2504-3110, 77, 10.3390/fractalfract9020077
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3753) PDF downloads(115) Cited by(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog