AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On approximate solution of lattice functional equations in Banach f-algebras

1 Department of Mathematics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
2 Faculty of Electrical and Electronics Engineering, Ulsan College, Ulsan 44919, Korea
3 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

The aim of the current manuscript is to prove the Hyers-Ulam stability of supremum, infimum and multiplication preserving functional equations in Banach f -algebras. In fact, by using the direct method and the fixed point method, the Hyers-Ulam stability of the functional equations is proved.
  Figure/Table
  Supplementary
  Article Metrics

References

1. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.

2. S. J. Bernau and C. B. Huijsmans, Almost f-algebras and d-algebras, Math. Proc. Cambridge Philoso. Soc., 107 (1990), 287-308.    

3. F. Beukers, C. B. Huijsmans and B. D. Pagter, Unital embedding and complexification of falgebras, Math. Z., 183 (1983), 131-144.    

4. A. Bodaghi and S. Kim, Ulam's type stability of a functional equation derivaing from quadratic and additive functions, J. Math. Inequal., 9 (2015), 73-84.

5. J. Brzdkek, L. Cadariu and K. Cieplinski, Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014 (2014), 829419.

6. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 4.

7. V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705.

8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224.

9. S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc., 126 (1998), 3137-3143.    

10. S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16.

11. Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.

12. P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991.

13. E. Movahednia, Fuzzy stability of quadratic functional equations in general cases, ISRN Math. Anal., 10 (2011), 553-560.

14. E. Movahednia, S. M. S. Modarres Mosadegh, C. Park, et al. Stability of a lattice preserving functional equation on Riesz space: Fixed point alternative, J. Comput. Anal. Appl., 21 (2016), 83-89.

15. E. Movahednia and M. Mursaleen, Stability of a generalized quadratic functional equation in intuitionistic fuzzy 2-normed space, Filomat, 30 (2016), 449-457.    

16. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.

17. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300.    

18. F. Riesz, Sur la decomposition des opérations fonctionnelles linéaires, Atti Congr. Internaz. Mat. Bologna, 3 (1930), 143-148.

19. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York, Heidelberg, 1974.

20. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers Inc., New York, 1960.

21. A. Uyar, On Banach lattice algebras, Turkish J. Math., 29 (2005), 287-290.

22. A. W. Wickstead, Characterisations of semi-prime archimedean f-algebras, Math. Z., 200 (1989), 353-354.

23. R. Yilmaz and A. Yilmaz, On Banach lattice algebras, VFAST Trans. Math., 5 (2015), 1-9.

24. A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1997.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved