AIMS Mathematics, 2020, 5(5): 4596-4612. doi: 10.3934/math.2020295

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Instability of standing waves for the inhomogeneous Gross-Pitaevskii equation

1 Department of Basic Teaching and Research, Qinghai University, Xining, 810016, China
2 Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China

In this paper, we consider the instability of standing waves for an inhomogeneous Gross-Pitaevskii equation \[ i\psi_t +\Delta \psi -a^2|x|^2\psi +|x|^{-b}|\psi|^{p}\psi=0. \] This equation arises in the description of nonlinear waves such as propagation of a laser beam in the optical fiber. We firstly proved that there exists $\omega_*>0$ such that for all $\omega>\omega_*$, the standing wave $\psi(t,x)=e^{i\omega t}u_\omega(x)$ is unstable. Then, we deduce that if $\partial_\lambda^2S_\omega(u_\omega^\lambda)|_{\lambda=1}\leq 0$, the ground state standing wave $e^{i\omega t}u_\omega(x)$ is strongly unstable by blow-up, where $u_\omega^\lambda(x)=\lambda^{\frac{N}{2}}u_\omega( \lambda x)$ and $S_\omega$ is the action. This result is a complement to the partial result of Ardila and Dinh (Z. Angew. Math. Phys. 2020), where the strong instability of standing waves has been studied under a different assumption.
  Figure/Table
  Supplementary
  Article Metrics

References

1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007.

2. G. Baym, C. J. Pethick, Ground state properties of magnetically trapped Bose-Einstein condensate rubidium gas, Phys. Rev. Lett., 76 (1996), 6-9.    

3. L. Pitaevskii, S. Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, 116. The Clarendon Press, Oxford University Press, Oxford, 2003.

4. J. Chen, On a class of nonlinear inhomogeneous Schrödinger equations, J. Appl. Math. Comput., 32 (2010), 237-253.    

5. J. Chen, B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357-367.

6. A. de Bouard, R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), 1157-1177.

7. V. D. Dinh, Blowup of H1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Analysis, 174 (2018), 169-188.    

8. B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined powertype nonlinearities, J. Evol. Equ., 18 (2018), 203-220.    

9. B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507.    

10. F. Genoud, An inhomogeneous, L2-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31 (2012), 283-290.    

11. F. Genoud, C. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.    

12. X. Luo, Stability and multiplicity of standing waves for the inhomogeneous NLS equation with a harmonic potential, Nonlinear Anal. Real World Appl., 45 (2019), 688-703.    

13. J. Zhang, S. Zhu, Sharp energy criteria and singularity of blow-up solutions for the DaveyStewartson system, Commun. Math. Sci., 17 (2019), 653-667.    

14. S. Zhu, Blow-up solutions for the inhomogeneous Schrödinger equation with L2 supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760-776.    

15. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

16. S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463.

17. A. Bensouilah, V. D. Dinh, S. H. Zhu, On stability and instability of standing waves for the nonlinear Schrödinger equation with inverse-square potential, J. Math. Phys., 59 (2018), 18.

18. J, Chen, B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Physica D: Nonlinear Phenomena, 227 (2007), 142-148.    

19. Z. Cheng, Z. Shen, M. Yang, Instability of standing waves for a generalized Choquard equation with potential, J. Math. Phys., 58 (2017), 13.

20. Z. Cheng, M. Yang, Stability of standing waves for a generalized Choquard equation with potential, Acta Appl. Math., 157 (2018), 25-44.    

21. V. D. Dinh, On instability of standing waves for the mass-supercritical fractional nonlinear Schrödinger equation, Z. Angew. Math. Phys., 70 (2019), 17.

22. B. Feng, Sharp threshold of global existence and instability of standing wave for the SchrödingerHartree equation with a harmonic potential, Nonlinear Anal. Real World Appl., 31 (2016), 132-145.    

23. B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.    

24. B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the L2-critical case, J. Dynam. Differential Equations, (2019), doi: 10.1007/s10884-019-09779-6.

25. B. Feng, J. Liu, H. Niu, et al. Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, Nonlinear Anal., 196 (2020), 111791.

26. R. Fukuizumi, M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 691-706.

27. R. Fukuizumi, M. Ohta, Strong instability of standing waves with negative energy for double power nonlinear Schrödinger equations, SUT J. Math., 54 (2018), 131-143.

28. M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143.    

29. M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Comm. Pure Appl. Anal., 17 (2018), 1671-1680.    

30. R. Fukuizumi, M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math., 56 (2019), 713-726.

31. Y. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Physica D: Nonlinear Phenomena, 237 (2008), 998-1005.    

32. J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.    

33. J. Zhang, S. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dynam. Differential Equations, 29 (2017), 1017-1030.    

34. A. H. Ardila, V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24.

35. L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193-208.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved