AIMS Mathematics, 2020, 5(5): 4546-4562. doi: 10.3934/math.2020292.

Research article Special Issues

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On the r-dynamic coloring of subdivision-edge coronas of a path

1 Department of Mathematics. SNS College of Technology, Tamil Nadu, India
2 Department of Mathematics. Kongunadu Arts and Science College, Tamil Nadu, India
3 Department of Applied Mathematics I. Universidad de Sevilla, Spain

Special Issues: New advances in Combinatorics

This paper deals with the r-dynamic chromatic number of the subdivision-edge corona of a path and exactly one of the following nine types of graphs: a path, a cycle, a wheel, a complete graph, a complete bipartite graph, a star, a double star, a fan graph and a friendship graph.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cycle; complete graph; complete bipartite graph; fan graph; friendship graph; path; r-dynamic coloring; star graph; subdivision-edge corona; wheel

Citation: G. Nandini, M. Venkatachalam, Raúl M. Falcón. On the r-dynamic coloring of subdivision-edge coronas of a path. AIMS Mathematics, 2020, 5(5): 4546-4562. doi: 10.3934/math.2020292

References

  • 1. R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4 (1970), 322-325.    
  • 2. P. Lu, Y. Miao, The generalized characteristic polynomial of the subdivision-vertex and subdivision-edge coronae, Ars Combin., 129 (2016), 341-356.
  • 3. E. T. Baskoro, I. A. Purwasih, The locating-chromatic number for corona product of graphs, Southeast-Asian J. Sci., 1 (2012), 126-136.
  • 4. S. A. U. H. Bokhary, T. Iqbal, U. Ali, Game chromatic number of Cartesian and corona product graphs, J. Algebra Comb. Discrete Struct. Appl., 5 (2018), 129-136.
  • 5. Dafik, I. H. Agustin, D. A. R. Wardani, et al. The r-dynamic chromatic number of corona of order two of any graphs with complete graph, Journal of Physics: Conference Series, 1306 (2019), 012046.
  • 6. H. Furmanczyk, M. Kubale, Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, Ars Math. Contemp., 10 (2016), 333-347.    
  • 7. M. I. Huilgol, V. Sriram, On the harmonious coloring of certain class of graphs, J. Comb. Inf. Syst. Sci., 41 (2016), 17-29.
  • 8. K. Kaliraj, R. Sivakami, J. Vernold Vivin, Star edge coloring of corona product of path and wheel graph families, Proyecciones, 37 (2018), 593-601.    
  • 9. K. Kaliraj, V. J. Veninstine, V. J. Vernold, Equitable coloring on corona graph of graphs, Journal of Combinatorial Mathematicsand Combinatorial Computing, 81 (2012), 191-197.
  • 10. A. I. Kristiana, Dafik, M. I. Utoyo, et al. On r-dynamic chromatic number of the corronation of path and several graphs, Int. J. Adv. Eng. Res. Sci., 4 (2017), 96-101.    
  • 11. A. I. Kristiana, M. I. Utoyo, Dafik, The lower bound of the r-dynamic chromatic number of corona product by wheel graphs, AIP Conference Proceedings, 2014 (2018), 020054.
  • 12. A. I. Kristiana, M. I. Utoyo, Dafik, On the r-dynamic chromatic number of the corronation by complete graph, J. Phys. Conf. Ser., 1008 (2018), 012033.
  • 13. A. I. Kristiana, M. I. Utoyo, R. Alfarisi, et al. r-dynamic coloring of the corona product of graphs, Discrete Math. Algorithms Appl., (2020), 2050019.
  • 14. S. Mohan, J. Geetha, K. Somasundaram, Total coloring of the corona product of two graphs, Australasian J. Combinatorics, 68 (2017), 15-22.
  • 15. F. A. Muntaner-Batle, J. Vernold Vivin, M. Venkatachalam, Harmonious coloring on corona product of complete graphs, Nat. Acad. Sci. Lett., 37 (2014), 461-465.    
  • 16. N. Ramya, On coloring of corona graphs, Indian J. Sci. Technol, 7 (2014), 9-11.
  • 17. J. V. Vivin, M. Venkatachalam, The b-chromatic number of corona graphs, Util. Math., 88 (2012), 299-307.
  • 18. T. Pathinathan, A. A. Mary, D. Bhuvaneswari, b-chromatic number of subdivision edge and vertex corona, Int. J. Comput. Algorithm, 3 (2014), 44-47.    
  • 19. B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI: Ph.D Thesis, West Virginia University, 2001.
  • 20. H.-J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin., 68 (2003), 193-201.
  • 21. I. H. Agustin, D. Dafik, A. Y. Harsya, On r-dynamic coloring of some graph operation, Int. J. Combin., 1 (2016), 22-30.
  • 22. S. Akbari, M. Ghanbari, S. Jahanbekam, On the dynamic chromatic number of Cartesian product graphs, Ars Combin., 114 (2014), 161-167.
  • 23. M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math., 159 (2011), 152-156.    
  • 24. Dafik, D. E. W. Meganingtyas, K. D. Purnomo, et al. Several classes of graphs and their r-dynamic chromatic numbers, Journal of Physics: Conference Series, 855 (2017), 012011.
  • 25. S. Jahanbekama, J. Kim, O. Suil, et al. On r-dynamic coloring of graphs, Discrete Appl. Math., 206 (2016), 65-72.    
  • 26. R. Kang, T. Müller, D. B. West, On r-dynamic coloring of grids, Discrete Appl. Math., 186 (2015), 286-290.    
  • 27. H.-J. Lai, B. Montgomery, Z. Tao, et al. Conditional colorings of graphs, Discrete Math., 306 (2006), 1997-2004.    
  • 28. S. Loeb, T. Mahoney, B. Reiniger, et al. Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math., 235 (2018), 129-141.    
  • 29. A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Appl. Math., 201 (2016), 222-227.    
  • 30. S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math., 157 (2009), 3005-3007.    
  • 31. S. J. Kim, W. J. Park, List dynamic coloring of sparse graphs, International Conference on Combinatorial Optimization and Applications, 6831 (2011), 156-162.    
  • 32. S.-J. Kim, B. Park, List 3-dynamic coloring of graphs with small maximum average degree, Discrete Math., 341 (2018), 1406-1418.    
  • 33. H.-J. Lai, X. Lv, M. Xu, On r-hued colorings of graphs without short induced paths, Discrete Math., 342 (2019), 1904-1911.    
  • 34. W.-Q. Li, J.-B. Li, L.-Y. Miao, et al. On r-hued coloring of planar graphs with girth at least 5, Util. Math., 109 (2018), 303-312.
  • 35. H. M. Song, S. H. Fan, Y. Chen, et al. On r-hued coloring of K4-minor free graphs, Discrete Math., 315 (2014), 47-52.
  • 36. H. M. Song, H. J. Lai, J. L. Wu, On r-hued coloring of planar graphs with girth at least 6, Discrete Appl. Math., 198 (2016), 251-263.
  • 37. H. Zhu, S. Chen, L. Miao, et al. On list r-hued coloring of planar graphs, J. Comb. Optim., 34 (2017), 874-890.    
  • 38. J. Zhu, Y. Bu, List r-dynamic coloring of graphs with small maximum average degree, Discrete Appl. Math., bf 258 (2019), 254-263.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved