Research article

Existence of least energy nodal solution for Kirchhoff-type system with Hartree-type nonlinearity

  • Received: 31 March 2020 Accepted: 10 May 2020 Published: 20 May 2020
  • MSC : 35J60, 35J20

  • This paper deals with following Kirchhoff-type system with critical growth $ \begin{cases} -(a+ b\int _{\mathbb{R}^3}|\nabla u|^{2}dx)\Delta u+ V(x)u+\phi|u|^{p-2}u = |u|^{4}u+\mu f(u), ~\ x\in\mathbb{R}^3,\\ (-\Delta)^{\alpha/2}\phi = l|u|^p, ~\ x\in \mathbb{R}^3, \end{cases} $ where $a, \mu \gt 0$, $b, l\geq0$, $\alpha\in(0, 3)$, $p\in[2, 3)$ and $\phi|u|^{p-2}u$ is a Hartree-type nonlinearity. By the minimization argument on the nodal Nehari manifold and the quantitative deformation lemma, we prove that the above system has a least energy nodal solution. Our result improve and generalize some interesting results which were obtained in subcritical case.

    Citation: Jin-Long Zhang, Da-Bin Wang. Existence of least energy nodal solution for Kirchhoff-type system with Hartree-type nonlinearity[J]. AIMS Mathematics, 2020, 5(5): 4494-4511. doi: 10.3934/math.2020289

    Related Papers:

  • This paper deals with following Kirchhoff-type system with critical growth $ \begin{cases} -(a+ b\int _{\mathbb{R}^3}|\nabla u|^{2}dx)\Delta u+ V(x)u+\phi|u|^{p-2}u = |u|^{4}u+\mu f(u), ~\ x\in\mathbb{R}^3,\\ (-\Delta)^{\alpha/2}\phi = l|u|^p, ~\ x\in \mathbb{R}^3, \end{cases} $ where $a, \mu \gt 0$, $b, l\geq0$, $\alpha\in(0, 3)$, $p\in[2, 3)$ and $\phi|u|^{p-2}u$ is a Hartree-type nonlinearity. By the minimization argument on the nodal Nehari manifold and the quantitative deformation lemma, we prove that the above system has a least energy nodal solution. Our result improve and generalize some interesting results which were obtained in subcritical case.


    加载中


    [1] C. O. Alves, M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166. doi: 10.1007/s00033-013-0376-3
    [2] C. O. Alves, M. A. S. Souto, S. H. M. Soares, A sign-changing solution for the Schrödinger-Poisson equation in $\mathbb{R}^3$, Rocky Mountain J. Math., 47 (2017), 1-25.
    [3] A. M. Batista, M. F. Furtado, Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials, Nonlinear Anal.: Real., 39 (2018), 142-156. doi: 10.1016/j.nonrwa.2017.06.005
    [4] S. Chen, X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$, Z. Angew. Math. Phys., 67 (2016), 102.
    [5] H. Guo, D. Wu, Nodal solutions for the Schrödinger-Poisson equations with convolution terms, Nonlinear Anal., 196 (2020), 111781.
    [6] S. Kim, J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041.
    [7] Z. Liang, J. Xu, X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, J. Math. Anal. Appl., 435 (2016), 783-799.
    [8] Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system, Ann. Mat. Pura. Appl., 195 (2016), 775-794. doi: 10.1007/s10231-015-0489-8
    [9] W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.
    [10] D. B. Wang, Y. Ma, W. Guan, Least energy sign-changing solutions for the fractional SchrödingerPoisson systems in $\mathbb{R}^3$, Bound. Value Probl., 25 (2019). Avaliable from: https://doi.org/10.1186/s13661-019-1128-x.
    [11] D. B. Wang, H. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301. doi: 10.1016/j.jmaa.2019.07.052
    [12] D. B. Wang, H. Zhang, Y. Ma, et al. Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity, J. Appl. Math. Comput., 61 (2019), 611-634. doi: 10.1007/s12190-019-01265-y
    [13] Z. Wang, H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, Calc. Var. Partial Differ. Equations, 52 (2015), 927-943.
    [14] X. Zhong, C. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$, Nonlinear Anal.: Real World Appl., 39 (2018), 166-184.
    [15] D. Cassani, Z. Liu, C. Tarsi, et al. Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161. doi: 10.1016/j.na.2019.01.025
    [16] Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.
    [17] Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$, Discrete Contin. Dyn. Syst. Ser. A., 38 (2018), 3139-3168.
    [18] G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a SchrödingerKirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506.
    [19] X. Han, X. Ma, X. M. He, Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations, Complex Var. Elliptic., 64 (2019), 181-203. doi: 10.1080/17476933.2018.1427078
    [20] Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödingertype equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 477 (2019), 174-186.
    [21] Y. Li, D. B. Wang, J. Zhang, Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math., 5 (2020), 2100-2112. doi: 10.3934/math.2020139
    [22] S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965-982. doi: 10.1016/j.jmaa.2015.07.033
    [23] A. Mao, S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243. doi: 10.1016/j.jmaa.2011.05.021
    [24] W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations., 259 (2015), 1256-1274. doi: 10.1016/j.jde.2015.02.040
    [25] J. Sun, L. Li, M. Cencelj, et al. Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^3$, Nonlinear Anal., 186 (2019), 33-54.
    [26] X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations., 261 (2016), 2384-2402. doi: 10.1016/j.jde.2016.04.032
    [27] D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. Avaliable from: https://doi.org/10.1063/1.5074163.
    [28] D. B. Wang, J. Zhang, Least energy sign-changing solutions of fractional Kirchhoff-SchrödingerPoisson system with critical growth, Appl. Math. Lett., 106 (2020), 106372.
    [29] L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the SchrödingerKirchhoff equation in $\mathbb{R}^3$, J. Math. Anal. Appl., 466 (2018), 1545-1569.
    [30] H. Zhang, W. Guan, Least energy sign-changing solutions for fourth-order Kirchhoff-type equation with potential vanishing at infinity, J. Appl. Math. Comput., Avaliable from: https://doi.org/10.1007/s12190-020-01349-0.
    [31] Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102
    [32] J. Zhao, X. Liu, Nodal solutions for Kirchhoff equation in $\mathbb{R}^3$ with critical growth, Appl. Math. Lett., 102 (2020), 106101.
    [33] S. Chen, B. L. Zhang, X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2020), 148-167.
    [34] J. Deng, J. F. Yang, Nodal solutions for Schrödinger-Poisson type equations in $\mathbb{R}^3$, Electron. J. Differ. Equations, 2016 (2016), 1-21.
    [35] A. Fiscella, P. Pucci, B. L. Zhang, p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), 1111-1131.
    [36] F. Li, Z. Song, Q. Zhang, Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906-2916. doi: 10.1080/00036811.2016.1253065
    [37] D. Lü, Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity, Commun. Pure Appl. Anal., 17 (2018), 605-626. doi: 10.3934/cpaa.2018033
    [38] X. Mingqi, V. D. Rădulescu, B. L. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM: COCV., 24 (2018), 1249-1273. doi: 10.1051/cocv/2017036
    [39] D. B. Wang, T. Li, X. Hao, Least-energy sign-changing solutions for Kirchhoff-SchrödingerPoisson systems in $\mathbb{R}^3$, Bound. Value Probl., 75 (2019). Avaliable from: https://doi.org/10.1186/s13661-019-1183-3.
    [40] M. Xiang, P. Pucci, M. Squassina, et al. Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 37 (2017), 1631-1649. doi: 10.3934/dcds.2017067
    [41] M. Xiang, V. D. Rădulescu, B. L. Zhang, Nonlocal Kirchhof problems with singular exponential nonlinearity, Appl. Math. Optim., (2020), 1-40.
    [42] M. Xiang, B. L. Zhang, V. D. Rădulescu, Superlinear Schrödinger-Kirchhof type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690-709.
    [43] M. Xiang, B. L. Zhang, D. Yang, Multiplicity results for variable fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190-204. doi: 10.1016/j.na.2018.07.016
    [44] G. Zhao, X. Zhu, Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-SchrödingerPoisson system, Appl. Math. Comput., 256 (2015), 572-581.
    [45] F. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60-80. doi: 10.1016/j.jmaa.2016.10.069
    [46] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Commun. Partial Differ. Equations, 20 (1995), 1725-1741.
    [47] R. F. Gabert, R. S. Rodrigues, Existence of sign-changing solution for a problem involving the fractional Laplacian with critical growth nonlinearities, Complex Var. Elliptic Equations, 65 (2020), 272-292. doi: 10.1080/17476933.2019.1579208
    [48] C. Miranda, Un'osservazione su un teorema di Brouwer, Bol. Un. Mat. Ital., 3 (1940), 5-7.
    [49] E. H. Lieb, M. Loss, Analysis, 2 Eds, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 14 (2001).
    [50] M. Willem, Minimax Theorems, Birkhauser, Barel, 1996.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(248) PDF downloads(231) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog