AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Several integral inequalities for (α, s,m)-convex functions

1 Bursa Uludağ University, Department of Mathematics and Science Education, 16059, BURSA, Turkey
2 COMSATS University Islamabad, Lahore Campus, Pakistan

In this paper, we establish several new integral inequalities for (α, s,m)-convex functions. We recapture the Hermite-Hadamard inequality as a particular case. In order to obtain our results, we use classical inequalities such as Hölder inequality, Hölder-Işcan inequality and Power mean inequality. We formulate several bounds involving special functions like classical Euler-Gamma, Beta and PsiGamma functions. We also give some applications.
  Article Metrics

Keywords convex function; (α, s,m)-convex function; Hermite-Hadamard inequality; Riemann-Liouville fractional integrals; Hölder’s inequality; power mean inequality; Psi-Gamma functions

Citation: M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir. Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253


  • 1. C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Second edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2018.
  • 2. S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, Victoria University, 2000.
  • 3. G. H. Toader, Some generalisations of the convexity Proc. Colloq. Approx. Optim. Cluj-Napoca (1985), 329-338.
  • 4. V. G. şan, A generalisation of the convexity, seminar on functional equations, approximation and convex., Cluj-Napoca, 1993.
  • 5. J. Park, Generalization of Ostrowski-type inequalities for differentiable real (s, m)-convex mappings, Far East J. Math. Sci., 49 (2011), 157-171.
  • 6. M. E. Özdemir, M. Ardıç, H. Önalan, Hermite-Hadamard-type inequalities via (α,m)-convexity, Comput. Math. Appl., 61 (2011), 2614-2620.
  • 7. M. Z. Sarıkaya, N. Aktan, On the generalizations of some integral inequalities and their applications, Math. Comput. Modelling, 54 (2011), 2175-2182.
  • 8. İ. Işcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2016, Article ID 304.
  • 9. M. Kadakal, İ. Işcan, H. Kadakal, et al. On improvements of some integral inequalities, Researchgate, DOI: 10.13140/RG.2.2.15052.46724, Preprint, January, 2019.
  • 10. S. Özcan, İ. Işcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequalities Appl., 2019 (2019).
  • 11. B. Bayraktar, M. Gürbuz, On some integral inequalities for (s, m)-convex functions, TWMS J. App. Eng. Math., 10 (2020), 288-295.
  • 12. S. S. Dragomir, G. H. Toader, Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai Math., 38 (1993), 21-28.
  • 13. M. K. Bakula, M. E. Ozdemir, J. Pečarić, Hadamard type inequalities for m-convex and (α, m)- convex functions, J. Ineq. Pure Appl. Math., 9 (2008), Art. 96.
  • 14. B. Bayraktar, V. Kudaev, Some new inequalities for (s, m)-convex and (α, m)-convex functions, Bulletin Karganda University-Math., 94 (2019), 15-25.
  • 15. M. K. Bakula, J. Pečarić, J. Perić, Extensions of the Hermite-Hadamard inequality with applications, Math. Inequal. Appl., 12 (2012), 899-921.
  • 16. H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.    
  • 17. M. Alomari, M. Darus, U. S. Kırmacı, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci., 31B (2011), 1643-1652.
  • 18. C. Ling, F. Qi, Inequalities of Simpson type for functions whose third derivatives are extended s-convex functions and applications to means, J. Comput. Anal. Appl., 19 (2015), 555-569.
  • 19. B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16 (2015), 873-890.
  • 20. T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112-3126.    
  • 21. J. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to α-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102-114.    
  • 22. T. S. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m; h)-preinvexity, Appl. Anal., 2019 (2019), 1-21.
  • 23. B. Y. Xi, D. D. Gao, F. Qi, Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions, 2018, Aviable from:
  • 24. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York, Dover Publications, USA, 1972.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved