AIMS Mathematics, 2020, 5(4): 3899-3905. doi: 10.3934/math.2020252

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The primitive roots and a problem related to the Golomb conjecture

1 School of Mathematics, Northwest University, Xi’an, Shaanxi, P. R. China
2 College of Science, Northwest A&F University, Yangling, Shaanxi, P. R. China

In this paper, we use elementary methods, properties of Gauss sums and estimates for character sums to study a problem related to primitive roots, and prove the following result. Let $p$ be a large enough odd prime. Then for any two distinct integers $a, b \in \{1, 2,\cdots, p-1\}$, there exist three primitive roots $\alpha$, $\beta$ and $\gamma$ modulo $p$ such that the congruence equations $\alpha+\gamma\equiv a\bmod p$ and $\beta+\gamma\equiv b\bmod p$ hold.
  Article Metrics


1. S. W. Golomb, Algebraic constructions for costas arrays, J. Comb. Theory Ser. A, 37 (1984), 13-21.    

2. L. Qi, W. P. Zhang, On the generalization of Golomb's conjecture, Journal of Northwest University, Natural Science Edition, 45 (2015), 199-201.

3. Q. Sun, On primitive roots in a finite field, Journal of Sichuan University, Natural Science Edition, 25 (1988), 133-139.

4. T. Tian, W. Qi, Primitive normal element and its inverse in finite fields, Acta Math. Sin., 49 (2006), 657-668.

5. P. Wang, X. Cao, R. Feng, On the existence of some specific elements in finite fields of characteristic 2, Finite Fields Th. App., 18 (2012), 800-813.

6. J. P. Wang, On Golomb's conjecture, Sci. China Ser. A, 31 (1988), 152-161.

7. T. T. Wang, X. N. Wang, On the Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003-1009.    

8. W. Q. Wang, W. P. Zhang, A mean aalue related to primitive roots and Golomb's conjectures, Abstr. Appl. Anal., 2014 (2014), 1-5.

9. W. P. Zhang, On a problem related to Golomb's conjectures, J. Syst. Sci. Complex., 16 (2003), 13-18.

10. S. D. Cohen, W. P. Zhang, Sums of two exact powers, Finite Fields Th. App., 8 (2002), 471-477.    

11. S. D. Cohen, Pairs of primitive roots, Mathematica, 32 (1985), 276-285.

12. S. D. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68-79.    

13. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.

14. W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.

15. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

16. W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, Warszawa, 1987.

17. J. Bourgain, Z. M. Garaev, V. S. Konyagin, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524-1557.    

18. K. Gong, C. H. Jia, Shifted character sums with multiplicative coefficients, J. Number Theory, 153 (2015), 364-371.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved