
AIMS Mathematics, 2020, 5(4): 35733583. doi: 10.3934/math.2020232
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Chebyshev type inequalities involving extended generalized fractional integral operators
1 Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
2 Department of Mathematics Education, Education Faculty, Bursa Uludağ University, Görükle Campus, Bursa, Turkey
Received: , Accepted: , Published:
References
1. M. Andric, G. Farid, J. Pečarić, A further extension of MittagLeffler function, Fract. Calc. Appl. Anal., 21 (2018), 13771395.
2. S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10 (2009), 112.
3. Z. Dahmani, About some integral inequalities using RiemannLiouville integrals, General Mathematics, 20 (2012), 6369.
4. Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a RiemannLiouville operator, Bull. Math. Anal. Appl., 3 (2011), 3844.
5. Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493497.
6. Z. Dahmani, Some results associated with fractional integrals involving the extended Chebyshev functional, Acta Universitatis Apulansis, 27 (2011), 217224.
7. J. Daiya, J. Ram, R. K. Saxena, New fractional integral inequalities associated with Pathway operator, Acta Comment. Univ. Tartu. Math., 19 (2015), 121126.
8. S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and FejérHadamard inequalities for extended generalized fractional integrals involving special functions, J. Ineq. Appl., 2018 (2018), 119.
9. S. M. Kang, G. Farid, W. Nazeer, et al. (hm)convex functions and associated fractional Hadamard and FejérHadamard inequalities via an extended generalized MittagLeffler function, J. Ineq. Appl., 2019 (2019), 78.
10. C. P. Niculescu, I. Roventa, An extention of Chebyshev's algebric inequality, Math. Reports, 15 (2013), 9195.
11. M. E. Özdemir, E. Set, A. O. Akdemir, et al. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces, Afrika Matematika, 26 (2015), 16091619.
12. B. G. Pachpatte, A note on ChebyshevGrüss type inequalities for diferential functions, Tamsui Oxford Journal of Mathematical Sciences, 22 (2006), 2936.
13. T. R. Prabhakar, A singular integral equation with generalized MittagLeffler function in the kernel, Yokohama Math. J., 19 (1971), 715.
14. S. D. Purohit, S. L. Kalla, Certain inequalities related to the Chebyshev's functional involving ErdelyiKober operators, Scientia Mathematical Sciences, 25 (2014), 5563
15. G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended MittagLeffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 42444253.
16. T. O. Salim, A. W. Faraj, A generalization of MittagLeffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 113.
17. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, 1993.
18. M. Z. Sarıkaya, N. Aktan, H. Yıldırım, On weighted ChebyshevGrüss like inequalities on time scales, J. Math. Ineq., 2 (2008), 185195.
19. M. Z. Sarıkaya, A. Saglam, H. Yıldırım, On generalization of Chebyshev type inequalities, Iranian J. Math. Sci. Inform., 5 (2010), 4148.
20. M. Z. Sarıkaya, M. E. Kiriş, On Ostrowski type inequalities and Chebyshev type inequalities with applications, Filomat, 29 (2015), 123130.
21. E. Set, M. Z. Sarıkaya, F. Ahmad, A generalization of Chebyshev type inequalities for first differentiable mappings, Miskolc Mathematical Notes, 12 (2011), 245253.
22. E. Set, Z. Dahmani and İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via PolyaSzegö inequality, An International Journal of Optimization and Control: Theories Applications, 8 (2018), 137144.
23. E. Set, J. Choi, İ. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (2019), 381390.
24. E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019).
25. E. Set, İ. Mumcu, S. Demirbaş, Chebyshev type inequalities involving new conformable fractional integral operators, RACSAM, 113 (2018), 22532259.
26. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized MittagLeffler function in the kernel, Appl. Math. Comput., 211 (2009), 198210.
27. S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasiconvex functions, Adv. Difference Equ., 2019 (2019), 116.
28. F. Usta, H. Budak, M. Z. Sarıkaya, On Chebyshev Type Inequalities for Fractional Integral Operators, AIP Conference Proceedings, 1833 (2017), 020045.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)