AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Chebyshev type inequalities involving extended generalized fractional integral operators

1 Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
2 Department of Mathematics Education, Education Faculty, Bursa Uludağ University, Görükle Campus, Bursa, Turkey

In this paper, mainly by using the extended generalized fractional integral operator that involve a further extension of Mittag-Leffler function in the kernel, we obtain several fractional Chebyshev type integral inequalities. So, results of Dahmani et al. from [4] are generalized. Also, it is point out that new results are obtained for different fractional integral operators with the help of special selection of parameters.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Chebyshev inequality; fractional integral operators

Citation: Erhan Set, M. Emin Özdemir, Sevdenur Demirbaş. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232

References

  • 1. M. Andric, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395.    
  • 2. S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10 (2009), 1-12.
  • 3. Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, General Mathematics, 20 (2012), 63-69.
  • 4. Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
  • 5. Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497.
  • 6. Z. Dahmani, Some results associated with fractional integrals involving the extended Chebyshev functional, Acta Universitatis Apulansis, 27 (2011), 217-224.
  • 7. J. Daiya, J. Ram, R. K. Saxena, New fractional integral inequalities associated with Pathway operator, Acta Comment. Univ. Tartu. Math., 19 (2015), 121-126.
  • 8. S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Ineq. Appl., 2018 (2018), 119.
  • 9. S. M. Kang, G. Farid, W. Nazeer, et al. (h-m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Ineq. Appl., 2019 (2019), 78.
  • 10. C. P. Niculescu, I. Roventa, An extention of Chebyshev's algebric inequality, Math. Reports, 15 (2013), 91-95.
  • 11. M. E. Özdemir, E. Set, A. O. Akdemir, et al. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces, Afrika Matematika, 26 (2015), 1609-1619.    
  • 12. B. G. Pachpatte, A note on Chebyshev-Grüss type inequalities for diferential functions, Tamsui Oxford Journal of Mathematical Sciences, 22 (2006), 29-36.
  • 13. T. R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  • 14. S. D. Purohit, S. L. Kalla, Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Mathematical Sciences, 25 (2014), 55-63
  • 15. G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253.    
  • 16. T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1-13.    
  • 17. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, 1993.
  • 18. M. Z. Sarıkaya, N. Aktan, H. Yıldırım, On weighted Chebyshev-Grüss like inequalities on time scales, J. Math. Ineq., 2 (2008), 185-195.
  • 19. M. Z. Sarıkaya, A. Saglam, H. Yıldırım, On generalization of Chebyshev type inequalities, Iranian J. Math. Sci. Inform., 5 (2010), 41-48.
  • 20. M. Z. Sarıkaya, M. E. Kiriş, On Ostrowski type inequalities and Chebyshev type inequalities with applications, Filomat, 29 (2015), 123-130.
  • 21. E. Set, M. Z. Sarıkaya, F. Ahmad, A generalization of Chebyshev type inequalities for first differentiable mappings, Miskolc Mathematical Notes, 12 (2011), 245-253.    
  • 22. E. Set, Z. Dahmani and İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality, An International Journal of Optimization and Control: Theories Applications, 8 (2018), 137-144.
  • 23. E. Set, J. Choi, İ. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (2019), 381-390.    
  • 24. E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019).
  • 25. E. Set, İ. Mumcu, S. Demirbaş, Chebyshev type inequalities involving new conformable fractional integral operators, RACSAM, 113 (2018), 2253-2259.
  • 26. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
  • 27. S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ., 2019 (2019), 1-16.    
  • 28. F. Usta, H. Budak, M. Z. Sarıkaya, On Chebyshev Type Inequalities for Fractional Integral Operators, AIP Conference Proceedings, 1833 (2017), 020045.

 

This article has been cited by

  • 1. Barış ÇELİK, Erhan SET, On new integral inequalities using mixed conformable fractional integrals, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 2020, 63, 10.31801/cfsuasmas.698841

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved