
AIMS Mathematics, 2020, 5(4): 32983320. doi: 10.3934/math.2020212
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Orbital stability of solitary waves to the coupled compound KdV and MKdV equations with two components
1 School of Mathematical Sciences, Qufu Normal University, 273155 Qufu, Shandong, China
2 School of Statistics and Mathematics, Guangdong University of Finance and Economics, 510320 Guangzhou, Guangdong, China
Received: , Accepted: , Published:
References
1. R. Hirota, J. Satsuma, Soliton solutions of a coupled Kortewegde Vries equation, Phys. Lett. A, 85 (1981), 407408.
2. A. R. Chowdhury, R. Mukherjee, On the complete integrability of the HirotaSatsuma system, J. Phys. A Math. Gen., 17 (1984), 231234.
3. B. L. Guo, L. Chen, Orbital stability of solitary waves of coupled KdV equations, Differ. Integral Equ., 12 (1999), 295308.
4. J. Angulo, Stability of cnoidal waves to HirotaSatsuma systems, Mat. Contemp., 27 (2004), 189223.
5. J. Angulo, Stability of and instability to HirotaSatsuma system, Differ. Integral Equ., 18 (2005), 611645.
6. V. Narayanamurti, C. M. Varma, Nonlinear propagation of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 11051108.
7. M. Toda, Waves in nonlinear lattice, Prog. Theor. Phys. Supp., 45 (1970), 174200.
8. S. Q. Dai, Solitary wave at the interface of a twolayer fluid, Appl. Math. Mech., 3 (1982), 771788.
9. M. Wadati, Wave propagation in nonlinear lattice I, II, J. Phys. Soc. JPN, 38 (1975), 673686.
10. S. Q. Dai, G. F. Sigalov, A. V. Diogenov, Approximate analytical solutions for some strong nonlinear problems, Sci. China Ser. A, 33 (1990), 843853.
11. X. D. Pan, Solitary wave and similarity solutions of the combined KdV equation, Appl. Math. Mech., 9 (1988), 311316.
12. S. Y. Lou, L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and MKdV equation, Math. Meth. Appl. Sci., 17 (1994), 339347.
13. W. P. Hong, New types of solitarywave solutions from the combined KdVmKdV equation, Nuovo Cimento Soc. Ital. Fis. B., 115 (2000), 117118.
14. D. J. Huang, H. Q. Zhang, New exact travelling waves solutions to the combined KdVMKdV and generalized Zakharov equations, Rep. Math. Phys., 57 (2006), 257269.
15. W. G. Zhang, G. L. Shi, Y. H. Qin, et al. Orbital stability of solitary waves for the compound KdV equation, Nonlinear Anal. Real., 12 (2011), 16271639.
16. M. Grillakis, J. Shatah, W. Straussr, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160197.
17. M. Grillakis, J. Shatah, W. Straussr, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal., 94 (1990), 308348.
18. M. A. Alejo, Wellposedness and stability results for the Gardner equation, NODEANonlinear Differ., 19 (2012), 503520.
19. P. E. Zhidkov, KortewegCde Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Springer, Berlin, 2011.
20. C. Muñoz, The Gardner equation and the stability of multikink solutions of the mKdV equation, Discrete Contin. Dyn. Syst., 36 (2016), 38113843.
21. T. P. de Andrade, A. Pastor, Orbital stability of oneparameter periodic traveling waves for dispersive equations and applications, J. Math. Anal. Appl., 475 (2019), 12421275.
22. G. Alves, F. Natali, A. Pastor, Sufficient conditions for orbital stability of periodic traveling waves, J. Differ. Equations, 267 (2019), 879901.
23. C. GuhaRoy, Solitary wave solutions of a system of coupued nonlinear equation, J. Math. Phys., 28 (1987), 20872088.
24. C. GuhaRoy, Exact solutions to a coupled nonlinear equation, Int. J. Theor. Phys., 27 (1988), 447450.
25. C. GuhaRoy, On explicit solutions of a coupled KdVmKdV equation, Int. J. Modern Phys. B, 3 (1989), 871875.
26. T. Kato, On the KortewegdeVries equation, Manuscripta Math., 28 (1979), 8999.
27. B. L. Guo, S. B. Tan, Global smooth solution for coupled nonlinear wave equations, Math. Meth. Appl. Sci., 14 (1991), 419425.
28. J. P. Albert, J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 46 (1991), 119.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)