Research article

A sigmoidal fractional derivative for regularization

  • Received: 16 January 2020 Accepted: 26 March 2020 Published: 30 March 2020
  • MSC : 26A33

  • In this paper, we propose a new fractional derivative, which is based on a Caputo-type derivative with a smooth kernel. We show that the proposed fractional derivative reduces to the classical derivative and has a smoothing effect which is compatible with $\ell_{1}$ regularization. Moreover, it satisfies some classical properties.

    Citation: Mostafa Rezapour, Adebowale Sijuwade, Thomas Asaki. A sigmoidal fractional derivative for regularization[J]. AIMS Mathematics, 2020, 5(4): 3284-3297. doi: 10.3934/math.2020211

    Related Papers:

  • In this paper, we propose a new fractional derivative, which is based on a Caputo-type derivative with a smooth kernel. We show that the proposed fractional derivative reduces to the classical derivative and has a smoothing effect which is compatible with $\ell_{1}$ regularization. Moreover, it satisfies some classical properties.


    加载中


    [1] R. Gorenflo, F. Mainardi, 223-276. Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York 1997.
    [2] A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integr. Equat. Oper. Th., 71 (2011), 583-600. doi: 10.1007/s00020-011-1918-8
    [3] V. Kiryakova, Generalised Fractional Calculus and Applications, Pitman Research Notes in Mathematics, CRC Press, 1993.
    [4] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 2009.
    [5] M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1965.
    [6] E. C. de Oliveira, J. A. T. Machado, A review of definitions for fractional derivatives and integral, Math. Prob. Ing., 2014 (2014), 238459.
    [7] J. S. Zeng and W. T. Yin, On nonconvex decentralized gradient descent, IEEE T. Signal Proces., 66 (2018), 2834-2848.
    [8] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), 436-444. doi: 10.1038/nature14539
    [9] Y. Wei, Y. Kang, W. Yin, et al. Design of generalized fractional order gradient descent method, preprint, 2018.
    [10] Y. F. Pu, G. L. Zhou, Y. Zhang, et al. Fractional Extreme Value Adaptive Training Method: Fractional Steepest Descent Approach, IEEE T. Neur. Net. Lear., 26 (2013), 653-662.
    [11] M. Caputo, M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13.
    [12] E. C. de Oliveira, S. Jarosz, J. Vaz Jr., Fractional Calculus via Laplace Transform and its Application in Relaxation Processes, Commun. Nonlinear Sci., 69 (2019), 58-72. doi: 10.1016/j.cnsns.2018.09.013
    [13] V. E. Tarasov, No nonlocality. no fractional derivative, Commun. Nonlinear Sci., 62 (2018), 15-163. doi: 10.1016/j.cnsns.2018.02.019
    [14] D. Baleanu, A. Mousalou, S. Rezapour, (2018). The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ, Adv. Differ. Equ-NY, 2018 (2018), 255.
    [15] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular Kernel, Prog. Fract. Differ. Appl., 1 (2015), 87-92.
    [16] C. Bao, Y. PU, Y. Zhang, Fractional-Order Deep Backpropagation Neural Network, Comput. Intel. Neurosc., 2018 (2018), 1-10.
    [17] J. Wang, G. Yang, B. Zhang, et al. Convergence Analysis of Caputo-Type Fractional Order Complex-Valued Neural Networks, IEEE Access, 5 (2017), 14560-14571. doi: 10.1109/ACCESS.2017.2679185
    [18] S. Cheng, Y. Wei, Y. Chen, et al. An innovative fractional order LMS based on variable initial value and gradient order, Signal Process., 133 (2017), 260-269. doi: 10.1016/j.sigpro.2016.11.026
    [19] J. Wang, Y. Wen, Y. Gou, et al. (2017). Fractional-order gradient descent learning of BP neural networks with Caputo derivative, Neural Networks, 89 (2017), 19-30. doi: 10.1016/j.neunet.2017.02.007
    [20] D. Sheng, Y. Wei, Y. Chen, et al. Convolutional neural networks with fractional order gradient method, Neurocomputing, 2019.
    [21] Y. Q. Chen, Q. Gao, Y. H. Wei, et al. Study on fractional order gradient methods, Appl. Math. Comput., 314 (2017), 310-321.
    [22] U. N. Katugampola, A New Fractional Derivative with Classical Properties, arXiv preprint arXiv:1410.6535, 2014.
    [23] R. T. Alqahtani, Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection, J. Nonlinear Sci. Appl., 9 (2016), 1991-1999. doi: 10.22436/jnsa.009.05.05
    [24] A. Alsaedi, D. Baleanu, S. Etemad, et al. On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative, 2016 (2016), 1-8.
    [25] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
    [26] S. M. Aydogan, D. Baleanu, A. Mousalou, et al. On approximate solutions for two higher-order Caputo-Fabrizio fractional integro-differential equations, Adv. Differ. Equ-NY, 2017 (2017), 221.
    [27] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166.
    [28] T. M. Atanacković, S. Pilipović, D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal., 21 (2018), 29-44. doi: 10.1515/fca-2018-0003
    [29] V. N. Krutikov, L. A. Kazakovtsev, G. Shkaberina, et al. New method of training two-layer sigmoid neural networks using regularization, IOP Conference Series: Materials Science and Engineering, 537 (2019), 042055. doi: 10.1088/1757-899X/537/4/042055
    [30] R. Rakkiyappan, R. Sivaranjani, G. Velmurugan, et al. Analysis of global o(t-α) stability and global asymptotical periodicity for a class of fractional- order complex-valued neural networks with time varying delays, Neural Networks, 77 (2016), 51-69. doi: 10.1016/j.neunet.2016.01.007
    [31] X. Chen, Application of fractional calculus in bp neural networks, (Ph.D. thesis), Nanjing, Jiangsu: Nanjing Forestry University, 2013.
    [32] A. H.Zemanian, Distribution theory and transform analysis, New York: Dover Publ. Inc., 1987.
    [33] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11. doi: 10.18576/pfda/020101
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3036) PDF downloads(377) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog