AIMS Mathematics, 2020, 5(4): 3274-3283. doi: 10.3934/math.2020210.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Involution on prime rings with endomorphisms

1 Department of Mathematics, Faculty of Science & Arts-Rabigh, King Abdulaziz University, Saudi Arabia
2 Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Let $\mathcal{R}$ be a prime ring with involution $'*'$ and $\psi: \mathcal{R} \rightarrow \mathcal{R}$ be an endomorphism on $\mathcal{R}$. In this article, we study the action of involution $'*',$ and the effect of endomorphism $\psi$ satisfying $[\psi(x),\psi(x^*)]-[x,x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$. In particular, we prove that any centralizing involution on prime rings with involution of characteristic different from two is of the first kind or $\mathcal{R}$ satisfies $s_4$, the standard polynomial identity in four variables. Further, we establish that if a prime ring $\mathcal{R}$ with involution of characteristic different from two admits a non-trivial endomorphism $\psi$ such that $[\psi(x),\psi(x^*)]-[x,x^*]\in \mathcal{Z}(\mathcal{R})$ for all $x\in \mathcal{R}$, then the involution is of the first kind or $\mathcal{R}$ satisfies $s_4$ and $[\psi(x), x]=0$ for all $x\in \mathcal{R}$.
  Figure/Table
  Supplementary
  Article Metrics

Keywords involution; centralizing and commuting involution; prime ring; endomorphism

Citation: Abdul Nadim Khan, Shakir Ali. Involution on prime rings with endomorphisms. AIMS Mathematics, 2020, 5(4): 3274-3283. doi: 10.3934/math.2020210

References

  • 1. S. Ali, N. A. Dar, On *-centralizing mappings in rings with involution, Georgian Math. J., 21 (2014), 25-28.
  • 2. S. Ali, N. A. Dar, On centralizers of prime rings with involution, Bull. Iranian Math. Soc., 41 (2015), 1465-1475.
  • 3. S. Ali, N. A. Dar, A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes, 16 (2015), 17-24.    
  • 4. H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Can. Math. Bull., 37 (1994), 443-447.    
  • 5. H. E. Bell, G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ., 34 (1992), 135-144.
  • 6. M. Brešar, Commuting maps: a survey, Taiwanese J. Math., 8 (2004), 361-397.    
  • 7. M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.    
  • 8. M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, T. Am. Math. Soc., 335 (1993), 525-546.    
  • 9. M. Brešar, C. R. Miers, Strong commutativity preserving mappings of semiprime rings, Can. Math. Bull., 37 (1994), 457-460.    
  • 10. M. Brešar, C. R. Miers, Strong commutativity preserving maps of semiprime rings, Can. Math. Bull., 37 (1994), 457-460.    
  • 11. N. A. Dar, S. Ali, On *-commuting mapping and derivations in rings with involution, Turk. J. Math., 40 (2016), 884-894.    
  • 12. N. A. Dar, A. N. Khan, Generalized derivations on rings with involution, Algebr. Colloq., 24 (2017), 393-399.    
  • 13. Q. Deng, M. Ashraf, On strong commutativity preserving maps, Results Math., 30 (1996), 259-263.    
  • 14. V. De Fillipis, G. Scudo, Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Linear and Multilinear Algebra, 61 (2013), 917-938.    
  • 15. I. N. Herstein, A note on derivations II, Can. Math. Bull., 22 (1979), 509-511.    
  • 16. I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
  • 17. T. K. Lee, T. L. Wong, Nonadditive strong commutativity preserving maps, Comm. Algebra, 40 (2012), 2213-2218.    
  • 18. T. K. Lee, P. H. Lee, Derivations centralzing symmetric or skew symmetric elements, Bull. Inst. Math., 14 (1986), 249-256.
  • 19. P. K. Liu, C. K. Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra, 59 (2011), 905-915.    
  • 20. P. K. Liau, W. L. Huang, C. K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl., 436 (2012), 3099-3108.    
  • 21. C. K. Liu, Strong commutativity preserving maps on subsets of matrices that are not closed under addition, Linear Algebra Appl., 458 (2014), 280-290.    
  • 22. C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math., 166 (2012), 453-465.    
  • 23. C. K. Liu, On Skew derivations in semiprime Rings, Algebra Represent Th., 16 (2013), 1561-1576.    
  • 24. J. S. Lin, C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl., 428 (2008), 1601-1609.    
  • 25. J. S. Lin, C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl., 432 (2010), 14-23.    
  • 26. A. Mamouni, L. Oukhtite, H. Elmir, New classes of endomorphisms and some classification theorems, Comm. Algebra, 48 (2020), 71-82.    
  • 27. A. Mamouni, L. Oukhtite, B. Nejjar, et al. Some commutativity criteria for prime rings with differential identities on Jordan ideals, Comm. Algebra, 47 (2019), 355-361.    
  • 28. A. Mamouni, B. Nejjar, L. Oukhtite, Differential identities on prime rings with involution, J. Algebra Appl., 17 (2018), 1850163.
  • 29. B. Nejjar, A. Kacha, A. Mamouni, et al. Commuatitivity theorems in rings with involution, Comm. Algebra, 45 (2016), 698-708.
  • 30. J. Ma, X. W. Xu, F. W. Niu, Strong commutativity preserving generalized derivations on semiprime rings, Acta Math. Sin., 24 (2008), 1835-1842.    
  • 31. X. Qi, J. Hou, Strong commutativity presrving maps on triangular rings, Oper. Matrices, 6 (2012), 147-158.
  • 32. P. Šemrl, Commutativity preserving maps, Linear Algebra Appl., 429 (2008), 1051-1070.    
  • 33. W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl., 14 (1976), 29-35.    
  • 34. O. A. Zemani, L. Oukhtite, S. Ali, et al. On certain classes of generalized derivations, Math. Slovaca., 69 (2019), 1023-1032.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved