Research article

Darboux helices in three dimensional Lie groups

  • Received: 04 December 2019 Accepted: 04 March 2020 Published: 26 March 2020
  • MSC : 22E15, 53A04, 53C40

  • In this paper, we introduce Darboux helices in a three dimensional Lie group G with a bi-invariant metric and give some characterizations of Darboux helices. Besides, we give some relations between some special curves (general helices and slant helices) and Darboux helices. Moreover, we prove that all Darboux helices are not a slant helix if G is commutative.

    Citation: Ufuk Öztürk, Zeynep Büşra Alkan. Darboux helices in three dimensional Lie groups[J]. AIMS Mathematics, 2020, 5(4): 3169-3181. doi: 10.3934/math.2020204

    Related Papers:

  • In this paper, we introduce Darboux helices in a three dimensional Lie group G with a bi-invariant metric and give some characterizations of Darboux helices. Besides, we give some relations between some special curves (general helices and slant helices) and Darboux helices. Moreover, we prove that all Darboux helices are not a slant helix if G is commutative.
    加载中


    [1] D. J. Struik, Lectures on classical differential geometry, Reading, MA: Addison, 1988.
    [2] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153-163.
    [3] A. Menninger, Characterization of the slant helix as successor curve of the general helix, International Electronic Journal of Geometry, 7 (2014), 84-91.
    [4] M. Barros, A. Ferrández, P. Lucas, et al. General helices in the three-dimensional Lorentzian space forms, Rocky Mt. J. Math., 31 (2001), 373-388. doi: 10.1216/rmjm/1020171565
    [5] P. Lucas, J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited, B. Belg. Math. Soc-Sim., 23 (2016), 133-150.
    [6] E. Ziplar, A. Senol, Y. Yayli, On Darboux helices in euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12 (2012), 73-80.
    [7] N. Macit, M. Düldül, Relatively normal-slant helices lying on a surface and their characterizations, Hacet. J. Math. Stat., 46 (2017), 397-408.
    [8] A. Şenol, E. Ziplar, Y. Yayli, et al. A new approach on helices in Euclidean n-space, Math. Commun., 18 (2013), 241-256.
    [9] I. Gök, C. Camci, H. H. Hacisalihoğlu, Vn-slant helices in Euclidean n-space En, Math. Commun., 14 (2009), 317-329.
    [10] L. Kula, N. Ekmekci, Y. Yaylı, et al. Characterizations of slant helices in Euclidean 3-space, Turk. J. Math., 34 (2010), 261-273.
    [11] L. Kula, Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005), 600-607.
    [12] E. Özdamar, H. H. Hacisalihoğlu, A characterization of inclined curves in Euclidean n-space, Comm. Fac. Sci. Univ. Ankara Sér. A1 Math., 24 (1975), 15-23.
    [13] G. Öztürk, B. Bulca, B. Bayram, et al. Focal representation of k-slant helices in $\Bbb E^{m+1}$, Acta Universitatis Sapientiae, Mathematica, 7 (2015), 200-209.
    [14] B. Uzunoğlu, I. Gök, Y. Yaylı, A new approach on curves of constant precession, Appl. Math. Comput., 275 (2016), 317-323.
    [15] U. Çiftçi, A generalization of Lancret's theorem, J. Geom. Phys., 59 (2009), 1597-1603. doi: 10.1016/j.geomphys.2009.07.016
    [16] O. Zeki Okuyucu, I. Gök, Y. Yayli, et al. Slant helices in three dimensional Lie groups, Appl. Math. Comput., 221 (2013), 672-683.
    [17] A. Yampolsky, A. Opariy, Generalized helices in three-dimensional Lie groups, Turk. J. Math., 43 (2019), 1447-1455. doi: 10.3906/mat-1806-33
    [18] N. do Espírito-Santo, S. Fornari, K. Frensel, et al. Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math., 111 (2003), 459-470. doi: 10.1007/s00229-003-0357-5

    © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
  • Reader Comments
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(168) PDF downloads(191) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog