AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On some geometric properties and Hardy class of q-Bessel functions

Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Yunus Emre Campus, 70100, Karaman-Turkey

In this paper, we deal with some geometric properties including starlikeness and convexity of order α of Jackson’s second and third q-Bessel functions which are natural extensions of classical Bessel function Jν. In additon, we determine some conditions on the parameters such that Jackson’s second and third q-Bessel functions belong to the Hardy space and to the class of bounded analytic functions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords analytic function; convex and starlike functions of order α; Hardy space; q-Bessel functions

Citation: İbrahim Aktaş. On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203

References

  • 1. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge: Cambridge University Press, 1944.
  • 2. M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations (Lecture Notes in Mathematics 2056), Berlin: Springer-Verlag, 2012.
  • 3. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge: Cambridge University Press, 2005.
  • 4. F. H. Jackson, The basic Gamma-Function and the Elliptic functions, Proc. R. Soc. Lond. A, 76 (1905), 127-144.    
  • 5. F. H. Jackson, The applications of basic numbers to Bessel's and Legendre's equations, Proc. Lond. Math. Soc., 3 (1905), 1-23.
  • 6. H. T. Koelink, R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl., 186 (1994), 690-710.    
  • 7. M. E. H. Ismail, The zeros of basic Bessel function, the functions Jν+αx(x), and associated orthogonal polynomials, J. Math. Anal. Appl., 86 (1982), 1-19.
  • 8. L. D. Abreu, A q-sampling theorem related to the q-Hankel transform, Proc. Amer. Math. Soc., 133 (2005), 1197-1203.    
  • 9. İ. Aktaş, Á. Baricz, Bounds for the radii of starlikeness of some q-Bessel functions, Results Math., 72 (2017), 947-963.    
  • 10. İ. Aktaş, H. Orhan, On Partial sums of Normalized q-Bessel Functions, Commun. Korean Math. Soc., 33 (2018), 535-547.
  • 11. İ. Aktaş, H. Orhan, Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc., 57 (2020), 355–369.
  • 12. M. H. Annaby, Z. S. Mansour, O. A. Ashour, Sampling theorems associated with biorthogonal q-Bessel functions, J. Phys. A, 43 (2010), Art. No. 295204.
  • 13. M. E. H. Ismail, M. E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl., 135 (1988), 187-207.    
  • 14. T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Hankel and Fourier transforms, Trans. Amer. Math. Soc., 333 (1992), 445-461.
  • 15. Á. Baricz, D. K. Dimitrov, I. Mező, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl., 435 (2016), 968-985.    
  • 16. Á. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica, 48 (2006), 127-136.
  • 17. P. L. Duren, Theory of $\mathcal{H}^{p}$ spaces, A series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 38, New York and London: Academic Press, 1970.
  • 18. S. Owa, M. Nunokawa, H. Saitoh, et al. Close-to-convexity, starlikeness, and convexity of certain analytic functions, App. Math. Letter., 15 (2002), 63-69.    
  • 19. H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc., 51 (1975), 109-116.    
  • 20. R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47 (1982), 309-314.    
  • 21. P. J. Eenigenburg, F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J., 17 (1970), 335-346.
  • 22. I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.    
  • 23. Y. C. Kim, H. M. Srivastava, Some families of generalized Hypergeometric functions associated with the Hardy space of analytic functions, Prod. Japan Acad., Seri A, 70 (1994), 41-46.    
  • 24. S. Ponnusamy, The Hardy space of hypergeometric functions, Complex Var. Elliptic Equ., 29 (1996), 83-96.
  • 25. J. K. Prajapat, S. Maharana, D. Bansal, Radius of Starlikeness and Hardy Space of Mittag-Leffer Functions, Filomat, 32 (2018), 6475-6486.    
  • 26. N. Yağmur, Hardy space of Lommel functions, Bull. Korean Math. Soc., 52 (2015), 1035-1046.    
  • 27. N. Yağmur, H. Orhan, Hardy space of generalized Struve functions, Complex Var. Elliptic Equ., 59 (2014), 929-936.    
  • 28. J. Stankiewich, Z. Stankiewich, Some applications of Hadamard convolutions in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska, 40 (1986), 251-265.
  • 29. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved