AIMS Mathematics, 2020, 5(4): 3125-3137. doi: 10.3934/math.2020201

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fixed point theorems in R-metric spaces with applications

1 Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Mathematics, Semnan University, Semnan, Iran

The purpose of this paper is to introduce the notion of R-metric spaces and give a real generalization of Banach fixed point theorem. Also, we give some conditions to construct the Brouwer fixed point. As an application, we find the existence of solution for a fractional integral equation.
  Figure/Table
  Supplementary
  Article Metrics

References

1. C. T. Aage, J. N. Salunke, Fixed points of weak contractions in cone metric spaces, Ann. Funct. Anal., 2 (2011), 71.

2. M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420.

3. A. N. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., (2013), 163.

4. S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, et al. A new survey: Cone metric spaces, J. Int. Math. Virtual Institute., 9 (2019), 93-121.

5. H. Baghani, M. E. Gordji, M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl., 18 (2016), 465-477.    

6. S. Banach, Sur les operations dans les ensembles abstrits et leur applications aux equations integrals, Fund. Math., 3 (1922), 133-181.

7. L. E. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math Ann., 71 (1912), 97-115.

8. V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal., 72 (2010), 1-14.

9. V. V. Chistyakov, Modular metric spaces, II: application to superposition operators, Nonlinear Anal., 72 (2010), 15-30.

10. S. H. Cho, J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011 (2011), Article number: 87.

11. L. Ciric, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Beograd, 2003.

12. G. Deng, H. Huang, M. Cvetkovic, et al. Cone valued measure of noncompactness and related fixed point theorems, Bull. Int. Math. Virtual Inst., 8 (2018), 233-243.

13. M. Eshaghi Gordji, H Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algeb., 6 (2017), 251-260.

14. M. Eshaghi Gordji, M. Ramezani, M. De La Sen, et al. On orthogonal sets and Banach fixed point theorem, Fixed Point Theory., 18 (2017), 569-578.    

15. L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.

16. D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341 (2008), 876-882.    

17. S. Kakutani, A generalization of Brouwer fixed point theorem, Duke Math. J., 8 (1941), 457-459.    

18. M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-953.

19. M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129.

20. W. Kirk, N. Shahzad, Fixed Point Theory in Disatnce Spaces, Springer International Publishing Switzeralan, 2014.

21. N. Mehmood, A. Al Rawashdeh, S. Radenovic, New fixed point results for E-metric spaces, Positivity, 23 (2019), 1101-1111.

22. S. B. Nadler, Multi-valued contraction mappings, Pacific J. Mafh., 30 (1969), 475-488.

23. F. J. Nash, Equilibrium points in n-person game, Proc. Natl. Acad. Sci. USA., 36 (1950), 48-49.    

24. J. J. Nieto, R. Rodri Guez-Lo'Pez, Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations, Order 22 (2005), 223-239.

25. M. A. Noor, An iterative algorithm for variational inequalities, J. Math. Anal. Appl., 158 (1991), 448-455.

26. Z. Pales, I-R. Petre, Iterative fixed point theorems in E-metric spaces, Acta Math. Hung., 140 (2013), 134-144.

27. E. De Pascale, G. Marino, P. Pietramala, The use of the E-metric spaces in the search for fixed points, Matematiche, 48 (1993), 367-376.

28. M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127-132.

29. M. Ramezani, H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl., 8 (2017), 23-28.

30. A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435-1443.

31. A. Al-Rawashdeh, W. Shatanawi, M. Khandaqji, Normed ordered and E-metric spaces, Int. J. Math. Sci., 2012 (2012), ID 272137.

32. W. Rudin, Principles of mathematical analysis, thired edition, McGraw-Hill, Inc, 1976.

33. V. Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019.

34. D. Turkoglu, M. Abuloha, A. bdeljawad T: KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Anal., 72 (2010), 348-353.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved