Citation: Ruoyu Wei, Jinde Cao, Jurgen Kurths. Novel fixed-time stabilization of quaternion-valued BAMNNs with disturbances and time-varying coefficients[J]. AIMS Mathematics, 2020, 5(4): 3089-3110. doi: 10.3934/math.2020199
[1] | G. Simmons, Calculus Gems: Brief Lives and Memorable Mathematics, New York: USA: McGraw-Hill, 1992. |
[2] | S. Adler, Quaternionic Quantum Mechanics and Quantum Fields, USA: Oxford Univ. Press, 1995. |
[3] | C. Took and D. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex processes, IEEE T. Signal Process., 57 (2009), 1316-1327. doi: 10.1109/TSP.2008.2010600 |
[4] | C. Zou, K. Kou, Y. Wang, Quaternion collaborative and sparse representation with application to color face recognition, IEEE T. Image Process., 25 (2016), 3287-3302. doi: 10.1109/TIP.2016.2567077 |
[5] | Y. Xia, C. Jahanchahi, D. P. Mandic, Quaternion-valued echo state networks, IEEE T. Neur. Netw. Lear. Syst., 26 (2015), 663-673. doi: 10.1109/TNNLS.2014.2320715 |
[6] | T. Isokawa, T. Kusakabe, N. Matsui, et al. Quaternion neural network and its application. In: V. Palade, R. J. Howlett, L. Jain (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science, vol 2774. Springer, Berlin, Heidelberg. |
[7] | S. Qin, J. Feng, J. Song, et al. A one-layer recurrent neural network for constrained complexvariable convex optimization, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 534-544. doi: 10.1109/TNNLS.2016.2635676 |
[8] | Z. Tu, J. Cao, A. Alsaedi, et al. Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Netw., 89 (2017), 97-104. doi: 10.1016/j.neunet.2017.01.006 |
[9] | N. Li and J. Cao, Global dissipativity analysis of quaternion-valued memristor-based neural networks with proportional delay, Neurocomputing, 321 (2018), 103-113. doi: 10.1016/j.neucom.2018.09.030 |
[10] | Y. Liu, D. Zhang, J. Lu, Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dyn., 87 (2017), 553-565. doi: 10.1007/s11071-016-3060-2 |
[11] | Q. Song and X. Chen, Multistability analysis of quaternion-valued neural networks with time delays, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 5430-5440. doi: 10.1109/TNNLS.2018.2801297 |
[12] | X. Chen, Z. Li, Q. Song, et al. Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Netw., 91 (2017), 55-65. doi: 10.1016/j.neunet.2017.04.006 |
[13] | X. Chen and Q. Song, State estimation for quaternion-valued neural networks with multiple time delays, IEEE T. Syst. Man Cybern., Syst., 49 (2019), 2278-2287. doi: 10.1109/TSMC.2017.2776940 |
[14] | Y. Liu, D. Zhang, J. Lou, et al. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 4201-4211. doi: 10.1109/TNNLS.2017.2755697 |
[15] | R. Wei and J. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Netw., 113 (2019), 1-10. doi: 10.1016/j.neunet.2019.01.014 |
[16] | B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 4947-4960. doi: 10.1364/AO.26.004947 |
[17] | B. Kosko, Bidirectional associative memories, IEEE T. Syst. Man Cybern., Syst., 18 (1988), 49-60. doi: 10.1109/21.87054 |
[18] | X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85-99. doi: 10.1093/imamat/hxt027 |
[19] | Y. Li and C. Li, Matrix measure strategies for stabilization and synchronization of delayed BAM neural network, Nonlinear Dyn., 84 (2016), 1759-1770. doi: 10.1007/s11071-016-2603-x |
[20] | C. Chen, L. Li, H. Peng, et al. Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay, Neural Netw., 96 (2017), 47-54. doi: 10.1016/j.neunet.2017.08.012 |
[21] | D. Wang, L. Huang, L. Tang, Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 3815-3827. doi: 10.1109/TNNLS.2017.2741349 |
[22] | Z. Zhang, R. Guo, X. Liu, et al. Lagrange exponential stability of complex-valued BAM neural networks with time-varying delays, IEEE T. Syst. Man Cybern. Syst., (2018), 1-14. |
[23] | Y. Cao, R. Samidurai, R. Sriraman, Robust passivity analysis for uncertain neural networks with leakage delay and additive time-varying delays by using general activation function, Math. Comput. Simulat., 155 (2019), 57-77. doi: 10.1016/j.matcom.2017.10.016 |
[24] | Y. Cao, R. Sriraman, N. Shyamsundarraj, et al. Robust stability of uncertain stochastic complexvalued neural networks with additive time-varying delays, Math. Comput. Simulat., 171 (2020), 207-220. doi: 10.1016/j.matcom.2019.05.011 |
[25] | X. Yang and X. Li, Finite-time stability of linear non-autonomous systems with time-varying delays, Advances in Difference Equations, 2018 (2018), 101. |
[26] | L. Wang, Y. Shen, G. Zhang, Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks, IEEE T. Neur. Netw. Lear. Syst., 28 (2017), 2648-2659. |
[27] | X. Liu, D. Ho, Q. Song, et al. Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dyn., 90 (2017), 2057-2068. doi: 10.1007/s11071-017-3782-9 |
[28] | R. Wei, J. Cao, A. Alsaedi, Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays, Cogn. Neurodyn., 12 (2018), 121-134. doi: 10.1007/s11571-017-9455-z |
[29] | J. Hu, G. Sui, X. Lv, et al. Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Analysis: Modelling and Control, 23 (2018), 904-920. doi: 10.15388/NA.2018.6.6 |
[30] | Z. Wang, J. Cao, Z. Cai, et al. Anti-synchronization in fixed time for discontinuous reactiondiffusion neural networks with time-varying coefficients and time delay, IEEE T. Cybernetics, (2019), 1-12. |
[31] | R. Wei, J. Cao, M. Abdel-Aty, Fixed-time synchronization of second-order MNNs in quaternion field, IEEE T. Syst. Man Cybern. Syst., (2019), 1-12. |
[32] | L. Wang, Y. Shen, Q. Yin, et al. Adaptive synchronization of memristor-based neural networks with time-varying delays, IEEE T. Neur. Netw. Lear. Syst., 26 (2015), 2033-2042. doi: 10.1109/TNNLS.2014.2361776 |
[33] | C. Chen, L. Li, H. Peng, et al. Adaptive synchronization of memristor-based BAM neural networks with mixed delays, Appl. Math. Comput., 322 (2018), 100-110. |
[34] | Z. Yang, B. Luo, D. Liu, et al. Adaptive synchronization of delayed memristive neural networks with unknown parameters, IEEE T. Syst. Man Cybern. Syst., 50 (2020), 539-549. doi: 10.1109/TSMC.2017.2778092 |
[35] | H. Zhang, N. Pal, Y. Sheng, et al. Distributed adaptive tracking synchronization for coupled reaction-diffusion neural network, IEEE T. Neur. Netw. Lear. Syst., 30 (2019), 1462-1475. doi: 10.1109/TNNLS.2018.2869631 |
[36] | A. Polyakov, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 1174-1186. doi: 10.1109/TNNLS.2017.2665581 |