
AIMS Mathematics, 2020, 5(4): 30893110. doi: 10.3934/math.2020199
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Novel fixedtime stabilization of quaternionvalued BAMNNs with disturbances and timevarying coefficients
1 School of Mathematics, Southeast University, Nanjing 210096, China
2 Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D14415, Germany
Received: , Accepted: , Published:
References
1. G. Simmons, Calculus Gems: Brief Lives and Memorable Mathematics, New York: USA: McGrawHill, 1992.
2. S. Adler, Quaternionic Quantum Mechanics and Quantum Fields, USA: Oxford Univ. Press, 1995.
3. C. Took and D. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex processes, IEEE T. Signal Process., 57 (2009), 13161327.
4. C. Zou, K. Kou, Y. Wang, Quaternion collaborative and sparse representation with application to color face recognition, IEEE T. Image Process., 25 (2016), 32873302.
5. Y. Xia, C. Jahanchahi, D. P. Mandic, Quaternionvalued echo state networks, IEEE T. Neur. Netw. Lear. Syst., 26 (2015), 663673.
6. T. Isokawa, T. Kusakabe, N. Matsui, et al. Quaternion neural network and its application. In: V. Palade, R. J. Howlett, L. Jain (eds) KnowledgeBased Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science, vol 2774. Springer, Berlin, Heidelberg.
7. S. Qin, J. Feng, J. Song, et al. A onelayer recurrent neural network for constrained complexvariable convex optimization, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 534544.
8. Z. Tu, J. Cao, A. Alsaedi, et al. Global dissipativity analysis for delayed quaternionvalued neural networks, Neural Netw., 89 (2017), 97104.
9. N. Li and J. Cao, Global dissipativity analysis of quaternionvalued memristorbased neural networks with proportional delay, Neurocomputing, 321 (2018), 103113.
10. Y. Liu, D. Zhang, J. Lu, Global exponential stability for quaternionvalued recurrent neural networks with timevarying delays, Nonlinear Dyn., 87 (2017), 553565.
11. Q. Song and X. Chen, Multistability analysis of quaternionvalued neural networks with time delays, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 54305440.
12. X. Chen, Z. Li, Q. Song, et al. Robust stability analysis of quaternionvalued neural networks with time delays and parameter uncertainties, Neural Netw., 91 (2017), 5565.
13. X. Chen and Q. Song, State estimation for quaternionvalued neural networks with multiple time delays, IEEE T. Syst. Man Cybern., Syst., 49 (2019), 22782287.
14. Y. Liu, D. Zhang, J. Lou, et al. Stability analysis of quaternionvalued neural networks: decomposition and direct approaches, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 42014211.
15. R. Wei and J. Cao, Fixedtime synchronization of quaternionvalued memristive neural networks with time delays, Neural Netw., 113 (2019), 110.
16. B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 49474960.
17. B. Kosko, Bidirectional associative memories, IEEE T. Syst. Man Cybern., Syst., 18 (1988), 4960.
18. X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 8599.
19. Y. Li and C. Li, Matrix measure strategies for stabilization and synchronization of delayed BAM neural network, Nonlinear Dyn., 84 (2016), 17591770.
20. C. Chen, L. Li, H. Peng, et al. Fixedtime synchronization of memristorbased BAM neural networks with timevarying discrete delay, Neural Netw., 96 (2017), 4754.
21. D. Wang, L. Huang, L. Tang, Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 38153827.
22. Z. Zhang, R. Guo, X. Liu, et al. Lagrange exponential stability of complexvalued BAM neural networks with timevarying delays, IEEE T. Syst. Man Cybern. Syst., (2018), 114.
23. Y. Cao, R. Samidurai, R. Sriraman, Robust passivity analysis for uncertain neural networks with leakage delay and additive timevarying delays by using general activation function, Math. Comput. Simulat., 155 (2019), 5777.
24. Y. Cao, R. Sriraman, N. Shyamsundarraj, et al. Robust stability of uncertain stochastic complexvalued neural networks with additive timevarying delays, Math. Comput. Simulat., 171 (2020), 207220.
25. X. Yang and X. Li, Finitetime stability of linear nonautonomous systems with timevarying delays, Advances in Difference Equations, 2018 (2018), 101.
26. L. Wang, Y. Shen, G. Zhang, FiniteTime Stabilization and Adaptive Control of MemristorBased Delayed Neural Networks, IEEE T. Neur. Netw. Lear. Syst., 28 (2017), 26482659.
27. X. Liu, D. Ho, Q. Song, et al. Finite/fixedtime robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dyn., 90 (2017), 20572068.
28. R. Wei, J. Cao, A. Alsaedi, Finitetime and fixedtime synchronization analysis of inertial memristive neural networks with timevarying delays, Cogn. Neurodyn., 12 (2018), 121134.
29. J. Hu, G. Sui, X. Lv, et al. Fixedtime control of delayed neural networks with impulsive perturbations, Nonlinear Analysis: Modelling and Control, 23 (2018), 904920.
30. Z. Wang, J. Cao, Z. Cai, et al. Antisynchronization in fixed time for discontinuous reactiondiffusion neural networks with timevarying coefficients and time delay, IEEE T. Cybernetics, (2019), 112.
31. R. Wei, J. Cao, M. AbdelAty, Fixedtime synchronization of secondorder MNNs in quaternion field, IEEE T. Syst. Man Cybern. Syst., (2019), 112.
32. L. Wang, Y. Shen, Q. Yin, et al. Adaptive synchronization of memristorbased neural networks with timevarying delays, IEEE T. Neur. Netw. Lear. Syst., 26 (2015), 20332042.
33. C. Chen, L. Li, H. Peng, et al. Adaptive synchronization of memristorbased BAM neural networks with mixed delays, Appl. Math. Comput., 322 (2018), 100110.
34. Z. Yang, B. Luo, D. Liu, et al. Adaptive synchronization of delayed memristive neural networks with unknown parameters, IEEE T. Syst. Man Cybern. Syst., 50 (2020), 539549.
35. H. Zhang, N. Pal, Y. Sheng, et al. Distributed adaptive tracking synchronization for coupled reactiondiffusion neural network, IEEE T. Neur. Netw. Lear. Syst., 30 (2019), 14621475.
36. A. Polyakov, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE T. Neur. Netw. Lear. Syst., 29 (2018), 11741186.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)