AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus

1 Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2 Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
4 Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

We construct Jakimovski-Leviatan-Beta type q-integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. We obtain the Korovkin type results, the rate of convergence as well as some direct theorems.
  Article Metrics


1. P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880), 119-144.    

2. İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, et al. Approximation by Chlodowsky type JakimovskiLeviatan operators, J. Comput. Appl. Math., 259 (2014), 153-163.    

3. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.

4. V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.

5. V. Kac, A. De Sole, On integral representations of q-gamma and q-beta functions, Mathematica, 9 (2005), 11-29.

6. W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl., 4 (1967), 31-45.

7. M. E. Keleshteri, N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351-369.

8. M. Mursaleen, K. J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of JakimovskiLeviatan operators involving q-Appell polynomials, Iranian J. Sci. Tech. A, 41 (2017), 891-900.    

9. M. Mursaleen, T. Khan, On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators, Azerbaijan J. Math., 7 (2017), 16-26.

10. V. N. Mishra, P. Patel, On generalized integral Bernstein operators based on q-integers, Appl. Math. Comput., 242 (2014), 931-944.

11. M. Mursaleen, M. Ahasan, The Dunkl generalization of Stancu type q-Szász-Mirakjan-Kantrovich operators and some approximation results, Carpathian J. Math., 34 (2018) 363-370.

12. M. Mursaleen, S. Rahman, Dunkl generalization of q-Szász-Mirakjan operators which preserve x2, Filomat, 32 (2018), 733-747.

13. N. Rao, A. Wafi, A. M. Acu, q-Szász-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory, 13 (2019), 915-934.    

14. P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi 1960.

15. A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, Dokl. Akad. Nauk SSSR (Russian), 218 (1974), 1001-1004.

16. A. D. Gadžiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz. Tehn. Mat. Nauk (Russian), 5 (1975), 41-45.

17. E. Ibikli, A. D. Gadžiev, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turk. J. Math. 19 (1995), 331-337.

18. J. Peetre, Noteas de mathematica 39, Rio de Janeiro, Instituto de Mathematica Pura e Applicada, Conselho Nacional de Pesquidas, 1968.

19. A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 40 (1995), 39-47.

20. C. Atakut, N. Ispir, Approximation by modified Szász-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved