AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups

Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, P. R. China

Let $\mathcal{S}$ be a finite commutative semigroup written additively. An element $e$ of $\mathcal{S}$ is said to be idempotent if $e+e=e$. The Erdős-Burgess constant of the semigroup $\mathcal{S}$ is defined as the smallest positive integer $\ell$ such that any $\mathcal{S}$-valued sequence $T$ of length $\ell$ must contain one or more terms with the sum being an idempotent of $\mathcal{S}$. If the semigroup $\mathcal{S}$ is a finite abelian group, the Erdős-Burgess constant reduces to the well-known Davenport constant in Combinatorial Number Theory. In this paper, we determine the value of the Erdős-Burgess constant for a direct sum of two finite cyclic semigroups in some cases, which generalizes the classical Kruyswijk-Olson Theorem on Davenport constant of finite abelian groups in the setting of commutative semigroups.
  Figure/Table
  Supplementary
  Article Metrics

References

1. W. R. Alford, A. Granville, C. Pomerance, There are infinitely many Carmichael numbers, Ann. Math., 140 (1994), 703-722.    

2. N. Alon, S. Friedland, G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79-91.    

3. G. Bhowmik, J.-C. Schlage-Puchta, Davenport's constant for groups of the form $\mathbb{Z}_3\oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{3d}$, In: Granville A., Nathanson M.B., Solymosi J. (eds) Additive Combinatorics, CRM Proc. Lecture Notes, 43, pp. 307-326, Am. Math. Soc., 2007.

4. D. A. Burgess, A problem on semi-groups, Studia Sci. Math. Hungar., 4 (1969), 9-11.

5. K. Cziszter, M. Domokos, A. Geroldinger, The Interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics. In: Chapman S., Fontana M., Geroldinger A., Olberding B. (eds) Multiplicative Ideal Theory and Factorization Theory, Springer Proceedings in Mathematics & Statistics, Springer, Cham, 2016.

6. C. Deng, Davenport constant for commutative rings, J. Number Theory, 172 (2017), 321-342.    

7. P. van Emde Boas, A combinatorial problem on finite abelian groups 2, Report ZW-1969-007, Mathematical Centre, Amsterdam, 1969.

8. P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite abelian groups 3, Report ZW 1969-008, Stichting Math. Centrum, Amsterdam, 1969.

9. P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel F, 10 (1961), 41-43.

10. W. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math., 222 (2000), 111-124.    

11. W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006), 337-369.    

12. A. Geroldinger, Additive Group Theory and Non-unique Factorizations. In: A. Geroldinger and I. Ruzsa (Eds.), Combinatorial Number Theory and Additive Group Theory (Advanced Courses in Mathematics-CRM Barcelona), Birkhäuser, Basel, 2009.

13. A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006.

14. A. Geroldinger, M. Liebmann, A. Philipp, On the Davenport constant and on the structure of extremal sequences, Period. Math. Hungar., 64 (2012), 213-225.    

15. D. W. H. Gillam, T. E. Hall, N. H. Williams, On finite semigroups and idempotents, Bull. London Math. Soc., 4 (1972), 143-144.    

16. P. A. Grillet, Commutative Semigroups, Kluwer Academic Publishers, 2001.

17. D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, Springer, Cham, 2013.

18. C. Liu, On the lower bounds of Davenport constant, J. Combin. Theory Ser. A, 171 (2020).

19. L. E. Marchan, O. Ordaz, I. Santos, et al. Multi-wise and constrained fully weighted Davenport constants and interactions, J. Combin. Theory Ser. A, 135 (2015), 237-267.    

20. R. Meshulam, An uncertainty inequality and zero subsums, Discrete Math., 84 (1990), 197-200.    

21. J. E. Olson, A Combinatorial Problem on Finite Abelian Groups, I, J. Number Theory, 1 (1969), 8-10.    

22. J. E. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory, 1 (1969), 195-199.    

23. A. Plagne, W. A. Schmid, An application of coding theory to estimating Davenport constants, Des. Codes Cryptogr., 61 (2011), 105-118.    

24. W. A. Schmid, The inverse problem associated to the Davenport constant for $C_2\oplus C_2\oplus C_{2n}$ and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18 (2011).

25. G. Wang, Davenport constant for semigroups II, J. Number Theory, 153 (2015), 124-134.    

26. G. Wang, Additively irreducible sequences in commutative semigroups, J. Combin. Theory Ser. A, 152 (2017), 380-397.    

27. G. Wang, Structure of the largest idempotent-product free sequences in semigroups, J. Number Theory, 195 (2019), 84-95.    

28. H. Wang, L. Zhang, Q. Wang, et al. Davenport constant of the multiplicative semigroup of the quotient ring $\frac{{\rm F}_p[x]}{\langle f(x)\rangle}$, Int. J. Number Theory, 12 (2016), 663-669.

29. L. Zhang, H. Wang, Y. Qu, A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of F2[x], Colloq. Math., 148 (2017), 123-130.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved