AIMS Mathematics, 2020, 5(4): 2899-2908. doi: 10.3934/math.2020187.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fundamental units for real quadratic fields determined by continued fraction conditions

Department of Mathematics, Faculty of Science and Arts, Kırklareli University, 39100-Kırklareli, Turkey

The aim of this paper is to obtain the real quadratic fields $\mathbb{Q}\left(\sqrt{d}\right)$ including $$\omega_d=\left[a_0;;\overline{\underbrace{\gamma,\gamma,\dots,\gamma}_{l-1},a_l}\right]$$ where $l=l\left(d\right)$ is the period length and $\gamma$ is a positive odd integer. Moreover, we have considered a new perspective to determine the fundamental units $\epsilon_d$ and got important results on Yokoi's invariants $n_d$ and $m_d$ [since they satisfy necessary and sufficient conditions related to Ankeny-Artin-Chowla conjecture (A.A.C.C), give bounds for fundamental units and so on...] for such types of fields.
  Figure/Table
  Supplementary
  Article Metrics

Keywords continued fraction expansion; real quadratic number field; fundamental unit; special sequence; Yokoi’s invariants

Citation: Özen Özer. Fundamental units for real quadratic fields determined by continued fraction conditions. AIMS Mathematics, 2020, 5(4): 2899-2908. doi: 10.3934/math.2020187

References

  • 1. J. Buchmann, T. Tagaki, U. Vollmer, Number field cryptography, Fields Institute Communication, 41 (2004), 111-121.
  • 2. D. Badziahin, J. Shallit, An unusual continued fraction, Proc. Amer. Math. Soc., 144 (2016), 1887-1896.
  • 3. H. Benamar, A. Chandoul, M. Mkaouar, On the continued fraction expansion of fixed period in finite fields, Canada Math. Bull., 58 (2015), 704-712.    
  • 4. K. Chakraborty, S. Kanemitsu, T. Kuzumaki, On the class number formula of certain real quadratic fields, Hardy Ramanujan J., 36 (2013), 1-7.
  • 5. L. E. Clemens, K. D. Merill, D. W. Roeder, Continued fractions and series, J. Number Theory, 54 (1995), 309-317.    
  • 6. N. Elezovic, A note on continued fractions of quadratic irrationals, Math. Commun., 2 (1997), 27-33.
  • 7. C. Friesen, On continued fraction of given period, Proc. Amer. Math. Soc., 10 (1988), 9-14.
  • 8. F. Halter-Koch, Continued fractions of given symmetric period, Fibonacci Quart., 29 (1991), 298-303.
  • 9. P. Jeangho, Notes on the quadratic integer and real quadratic number field, Osaka J. Math., 53 (2016), 983-1002.
  • 10. F. Kawamoto, K. Tomita, Continued fraction and certain real quadratic fields of minimal type, J. Math. Soc., 60 (2008), 865-903.    
  • 11. J. M. Kim, J. Ryu, On the class number and fundamental unit of the quadratic field $k=\mathbb{Q}\left(\sqrt{p.q}\right)$, Bull. Aus. Math. Soc., 85 (2012), 359-370.
  • 12. S. Louboutin, Continued fraction and real quadratic fields, J. Number Theory, 30 (1988), 167-176.    
  • 13. J. McLaughlin, Polynomial Solutions to Pell's Equation and Fundamental Units in Real Quadratic Fields, J. London Math. Soc., 67 (2003), 16-28.    
  • 14. R. A. Mollin, Quadratics, 3rd Ed, CRC Press, Boca Raton, FL, 1996.
  • 15. Ö. Özer, On Real Quadratic Number Fields Related With Specific Type of Continued Fractions, J. Anal. Number Theory, 4 (2016), 85-90.    
  • 16. Ö. Özer, Notes On Especial Continued Fraction Expansions and Real Quadratic Number Fields, J. Eng. Sci., 2 (2016), 74-89.
  • 17. Ö. Özer, Fibonacci Sequence and Continued Fraction Expansions in Real Quadratic Number Fields, Malays. J. Math. Sci., 11 (2017), 97-118.
  • 18. Ö. Özer, On The Fundamental Units of Certain Real Quadratic Number Fields, Karaelmas Sci. Eng. J., 7 (2017), 160-164.
  • 19. Ö. Özer, A. B. M. Salem, A Computational Technique For Determining Fundamental Unit in Explicit Type of Real Quadratic Number Fields, Int. J. Adv. Appl. Sci., 4 (2017), 22-27.
  • 20. Ö. Özer, A Study On The Fundamental Unit of Certain Real Quadratic Number Fields, Turk. J. Anal. Number Theory (TJANT), 6 (2018), 1-8.
  • 21. Ö. Özer, B. Djamel, Some Results on Special Types of Real Quadratic Fields, Bulletin of the Karaganda Univeristy-Mathematics, 3 (2019), 48-58.
  • 22. Ö. Özer, A Handy Technique For Fundamental Unit in Specific Type of Real Quadratic Fields, Appl. Math. Nonlinear Sci. (AMNS), 4 (2019), 1-4.    
  • 23. O. Perron, Die Lehre von den Kettenbrchen, Band I: Elementare Kettenbrche, 1977.
  • 24. R. Sasaki, A characterization of certain real quadratic fields, Proc. Japan Acad. Series A, 62 (1986), 97-100.    
  • 25. W. Sierpinski, Elementary Theory of Numbers, Warsaw, Monogra Matematyczne, 1964.
  • 26. K. Tomita, Explicit representation of fundamental units of some quadratic fields, Proc. Japan Acad. Series A, 71 (1995), 41-43.    
  • 27. K. Tomita, K. Yamamuro, Lower bounds for fundamental units of real quadratic Fields, Nagoya Math. J., 166 (2002), 29-37.    
  • 28. K. S. Williams, N. Buck, Comparison of the lengths of the continued fractions of $\sqrt{d}$ and $\frac{1+\sqrt{d}}{2}$, Proc. Amer. Math. Soc., 120 (1994), 995-1002.
  • 29. H. Yokoi, The fundamental unit and class number one problem of real quadratic fields with prime discriminant, Nagoya Math. J., 120 (1990), 51-59.    
  • 30. H. Yokoi, A note on class number one problem for real quadratic fields, Proc. Japan Acad. Series A, 69 (1993), 22-26.    
  • 31. H. Yokoi, The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J., 124 (1991), 181-197.    
  • 32. H. Yokoi, New invariants and class number problem in real quadratic fields, Nagoya Math., J., 132 (1993), 175-197.    
  • 33. Z. Zhang, Q. Yue, Fundamental units of real quadratic fields of odd class number, J. Number Theory, 137 (2014), 122-129.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved