AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On the dissipative solutions for the inviscid Boussinesq equations

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, P. R. China

In this paper, we study the dissipative solutions for the inviscid Boussinesq equations. It is shown that there is at least one dissipative solution for the inviscid incompressible Boussinesq equations. Moreover, if there is an unique strong solution then the dissipative solutions must coincide with the strong solution.
  Article Metrics


1. T. Buckmaster, Onsager's conjecture almost everywhere in time, Commun. Math. Phys., 333 (2015), 1175-1198.    

2. T. Buckmaster, C. De Lellis, P. Isett, et al. Anomalous dissipation for 1/5-Hölder Euler flows, Ann. Math., 182 (2015), 127-172.

3. T. Buckmaster, C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows with Onsager critical spatial regularity, Commun. Pur. Appl. Math., 69 (2016), 1613-1670.    

4. F. Cheng, C. J. Xu, Analytical smoothing effect of solution for the Boussinesq equations, Acta Math. Sci., 39 (2019), 165-179.    

5. A. Cheskidov, P. Constantin, S. Friedlander, et al. Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.    

6. P. Constantin, E. Weinan, E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209.    

7. A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.

8. A. Larios, E. Lunasin, E. S. Titi, Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization, arXiv:1010.5024.

9. C. De Lellis, L. Székelyhidi Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. An., 195 (2010), 225-260.    

10. C. De Lellis, L. Székelyhidi Jr, Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407.    

11. C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc., 16 (2014), 1467-1505.    

12. P. L. Lions, Mathematical Topics in Fluid Mechanics, New York: The Clarendon Press Oxford University Press, 1996.

13. A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

14. A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, 2003.

15. J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987.

16. L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration Mech. An., 166 (2003), 47-80.    

17. L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'IHP Analyse non linéaire, 26 (2009), 705-744.

18. A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys., 210 (2000), 541-603.    

19. T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equation with compact support, J. Funct. Anal., 272 (2017), 4334-4402.    

20. T. Tao, L. Zhang, On the continuous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 50 (2018), 1120-1162.    

21. T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equations, Acta Math. Sci., 38 (2018), 1591-1616.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved