Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Certain k-fractional calculus operators and image formulas of k-Struve function

1 Department of Mathematics, Wollo University, P.O. Box: 1145, Dessie, Ethiopia
2 Department of Mathematics, Cankaya University, Ankara, Turkey
3 Institute of Space Sciences, Magurele-Bucharest, Romania
4 Department of HEAS(Mathematics), Rajasthan Technical University, Kota-324010, India
5 Department of Mathematics, Marmara University, TR-34722, Kadköy, Istanbul, Turkey

Special Issues: 2nd International Conference on Mathematical Modeling, Applied Analysis and Computation (ICMMAAC-19), August 8–10, 2019, JECRC University, Jaipur, India

In this article, the Saigo’s k-fractional order integral and derivative operators involving k-hypergeometric function in the kernel are applied to the k-Struve function; outcome are expressed in the term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Struve functions are considered.
  Figure/Table
  Supplementary
  Article Metrics

References

1. A. Alaria, A. M. Khan, D. L. Suthar, et al., Application of fractional operators in Modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math, 5 (2019), doi.org/10.1007/s40819-019-0750-8.

2. K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov Kuznetsov equation, Appl. Math. Nonlinear Sci., 4 (2019), 289-304.    

3. D. Kumar, J. Singh, S. D. Purohit, et al., A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304.

4. K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with non integer-order derivative, Chaos, 29 (2019), 013145, doi.org/10.1063/1.5086909.

5. X. J. Yang, New general fractional-order rheological models with kernels of Mittag-Leffler functions, Rom. Rep. Phys., 69 (2017), 1-18.

6. X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 45-52.

7. A. Yokus, S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35-41.    

8. S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.

9. G. A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481-491.

10. A. Gupta, C. L. Parihar, Saigo's k-fractional calculus operators, Malaya J. Mat., 5 (2017), 494-504.

11. S. Mubeen, G. M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Sci., 7 (2012), 203-207.

12. M. Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ, 11 (1978), 135-143.

13. K. S. Nisar, S. R. Mondal, J. Choi, Certain inequalities involving k-Struve function, J. Inequalities Appl., 71 (2016), 8.

14. R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192.

15. Á. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, Springer, Berlin, 1994.

16. H. Habenom, D. L. Suthar, M. Gebeyehu, Application of Laplace transform on fractional kinetic equation pertaining to the generalized Galué type Struve function, Advances in Mathematical Physics, 2019, Article ID 5074039, 8.

17. K. S. Nisar, D. L. Suthar, S. D. Purohit, et al., Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc., 20 (2017), 261-267.

18. D. L. Suthar, M. Andualem, Integral formulas involving product of Srivastava's polynomials and Galué type Struve functions, Kyunpook Math. J., 59 (2019), 725-734.

19. D. L. Suthar, M. Ayene, Generalized fractional integral formulas for the k-Bessel function, J. Math., (2018), Article ID 5198621, 8, doi.org/10.1155/2018/5198621.

20. D. L. Suthar, S. D. Purohit, K. S. Nisar, Integral transforms of the Galué type Struve function, TWMS J. App. Eng. Math., 8 (2018), 114-121.

21. H. Tadesse, D. L. Suthar, Z. Gebru, Certain integral transforms of the generalized k-Struve function, Acta Univ. Apulensis Math. Inform., 59 (2019), 77-89.

22. R. Díaz, C. Teruel, q, k-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118-134.

23. R. Díaz, C. Ortiz, E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448-458.    

24. S. Mubeen, A. Rehman, A note on k-gamma function and Pochhammer k-symbol, J. Tnequalities Math. Sci., 6 (2014), 93-107.

25. K. S. Gehlot, J. C. Prajapati, Fractional calculus of generalized k-Wright function, J. Fractional Calculus Appl., 4 (2013), 283-289.

26. G. Rahman, K. S. Nisar, J. Choi, et al., Formulas for Saigo fractional integral operators with 2F1 generalized k-Struve functions, Far East J. Math. Sci., 102 (2017), 55-66.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved