Research article

On a problem concerning the ring of Nash germs and the Borel mapping

  • Received: 28 October 2019 Accepted: 02 January 2020 Published: 08 January 2020
  • MSC : 51M99, 14P20, 32C07

  • We denote by $\mathbb{R}$[[t]] the ring of formal power series with real coefficients. Let $\widehat{\mathcal{C}_{1}}\subset\mathbb{R}[[t]]$ be a subring. We say that $\widehat{\mathcal{C}_{1}}$ has the splitting property if for each $f\in\widehat{\mathcal{C}_{1}}$ and $A \cup B = \mathbb{N}$ such that $A\cap B = \emptyset$, if $f = G+H$ where $G = \displaystyle\sum_{w\in A}a_{w}t^{w}$ and $H = \displaystyle\sum_{w\in B}a_{w}t^{w}$ are formal power series, then $G\in\widehat{\mathcal{C}_{1}}$ and $H\in\widehat{\mathcal{C}_{1}}$. It is well known that the ring of convergent power series $\mathbb{R}${t} satisfies the splitting property. In this paper, we will examine this property for a subring of $\mathbb{R}${t} and for some local rings containing strictly $\mathbb{R}${t}.

    Citation: Mourad Berraho. On a problem concerning the ring of Nash germs and the Borel mapping[J]. AIMS Mathematics, 2020, 5(2): 923-929. doi: 10.3934/math.2020063

    Related Papers:

  • We denote by $\mathbb{R}$[[t]] the ring of formal power series with real coefficients. Let $\widehat{\mathcal{C}_{1}}\subset\mathbb{R}[[t]]$ be a subring. We say that $\widehat{\mathcal{C}_{1}}$ has the splitting property if for each $f\in\widehat{\mathcal{C}_{1}}$ and $A \cup B = \mathbb{N}$ such that $A\cap B = \emptyset$, if $f = G+H$ where $G = \displaystyle\sum_{w\in A}a_{w}t^{w}$ and $H = \displaystyle\sum_{w\in B}a_{w}t^{w}$ are formal power series, then $G\in\widehat{\mathcal{C}_{1}}$ and $H\in\widehat{\mathcal{C}_{1}}$. It is well known that the ring of convergent power series $\mathbb{R}${t} satisfies the splitting property. In this paper, we will examine this property for a subring of $\mathbb{R}${t} and for some local rings containing strictly $\mathbb{R}${t}.


    加载中


    [1] T. Carleman, Sur le calcul effectif d'une fonction quasi-analytique dont on donne les dérivées en un point, C. R. Acad. Sci. Paris, 176 (1923), 64-65.
    [2] T. Carleman, Les fonctions quasi-analytiques, Gauthiers Villars Paris, 1926.
    [3] O. Zariski, P. Samuel, Commutative Algebra, Graduate Texts in Mathematics, Volume II, Springer, 1975.
    [4] P. Erdos, Note on the Converse of Fabry's Gap Theorem, Trans. Amer. Math. Soc., 57 (1945), 102-104.
    [5] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. doi: 10.1007/BF02418579
    [6] J. P. Allouche, Note sur un article de Sharif et Woodcock, journal de Théorie des Nombres de Bordeaux, Tome1, no1 (1989), 163-187.
    [7] V. Thilliez, On quasianalytic local rings, Expo. Math., 26 (2008), 1-23. doi: 10.1016/j.exmath.2007.04.001
    [8] T. Bang, The theory of metric spaces applied to infinitely differentiable functions, Math. Scand., 1 (1953), 137-152. doi: 10.7146/math.scand.a-10374
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2672) PDF downloads(364) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog