Citation: Kevin R. Green, George W. Patrick, Raymond J. Spiteri. On theoretical upper limits for valid timesteps of implicit ODE methods[J]. AIMS Mathematics, 2019, 4(6): 1841-1853. doi: 10.3934/math.2019.6.1841
[1] | S. Dharmaraja, Y. Wang, G. Strang, Optimal stability for trapezoidal-backward difference splitsteps, IMA J. Numer. Anal., 30 (2010), 141-148. doi: 10.1093/imanum/drp022 |
[2] | W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, Society for Industrial and Applied Mathematics, 2000. |
[3] | E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer-Verlag, 2006. |
[4] | E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations I: Nonstiff problems., Springer-Verlag, 1993. |
[5] | A. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1998. |
[6] | J. E. Marsden and M. West, Discrete Mechanics and Variational Integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X |
[7] | G. W. Patrick, C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3 |
[8] | P. Deuflhard, B. Fiedler, P. Kunkel, Efficient Numerical Pathfollowing Beyond Critical Points, SIAM J. Numer. Anal., 24 (1987), 912-927. doi: 10.1137/0724059 |
[9] | U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Industrial and Applied Mathematics (SIAM), 1995. |
[10] | C. B. Haselgrove, The Solution of Non-Linear Equations and of Differential Equations with TwoPoint Boundary Conditions, The Computer Journal, 4 (1961), 255-259. doi: 10.1093/comjnl/4.3.255 |
[11] | P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer Publishing Company, 2011. |
[12] | G. W. Patrick, C. Cuell, R. J. Spiteri, et al. On converting any one-step method to a variational integrator of the same order, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 4 (2009), 341-349. |
[13] | G. W. Patrick, Variational discretizations: discrete tangent bundles, local error analysis, and arbitrary order variational integrators, AIP Conference Proceedings, 1168 (2009), 1013-1016. |
[14] | A. R. Humphries, Spurious solutions of numerical methods for initial value problems, IMA J. Numer. Anal., 13 (1993), 263-290. doi: 10.1093/imanum/13.2.263 |
[15] | A. Iserles, A. T. Peplow, A. M. Stuart, A unified approach to spurious solutions introduced by time discretisation. I: Basic theory, SIAM J. Numer. Anal., 28 (1991), 1723-1751. doi: 10.1137/0728086 |
[16] | R. Schreiber, H. B. Keller, Spurious solutions in driven cavity calculations, J. Comput. Phys., 49 (1983), 165-172. doi: 10.1016/0021-9991(83)90119-5 |
[17] | T. Murdoch, C. J. Budd, Convergent and spurious solutions of nonlinear elliptic equations, IMA J. Numer. Anal., 12 (1992), 365-386. doi: 10.1093/imanum/12.3.365 |
[18] | A. B. Stephens, G. R. Shubin, Multiple Solutions and Bifurcation of Finite Difference Approximations to Some Steady Problems of Fluid Dynamics, SIAM Journal on Scientific and Statistical Computing, 2 (1981), 404-415. doi: 10.1137/0902033 |
[19] | D. F. Griffiths, P. K. Sweby, H. C. Yee, On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal., 12 (1992), 319-338. doi: 10.1093/imanum/12.3.319 |
[20] | E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219-227. doi: 10.1016/S0168-9274(97)00061-5 |
[21] | S. Blanes, C. J. Budd, Adaptive Geometric Integrators for Hamiltonian Problems with Approximate Scale Invariance, SIAM Journal on Scientific Computing, 26 (2005), 1089-1113. doi: 10.1137/S1064827502416630 |
[22] | E. Hairer, G. Söderlind, Explicit, time reversible, adaptive step size control, SIAM J. Sci. Comput., 26 (2005), 1838-1851. |
[23] | B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, 2004. |
[24] | M. Schatzman, Numerical analysis: A mathematical introduction, Clarendon Press, Oxford, 2002. |
[25] | A. Iserles, A first course in the numerical analysis of differential equations, Cambridge University Press, Cambridge, 2009. |
[26] | J. Guchenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Springer-Verlag, 1983. |
[27] | Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, 2004. |
[28] | U. Kirchgraber, Multistep methods are essentially one-step methods, Numerische Mathematik, 48 (1986), 85-90. doi: 10.1007/BF01389443 |
[29] | J. C. Phillips, R. Braun, W. Wang, et al. Scalable molecular dynamics with NAMD, J. Comput. Chem., 26 (2005), 1781-1802. doi: 10.1002/jcc.20289 |
[30] | C. D. Cantwell, D. Moxey, A. Comerford, et al. Nektar plus plus: An open-source spectral/hp element framework, Comput. Phys. Commun., 192 (2015), 205-219. doi: 10.1016/j.cpc.2015.02.008 |
[31] | J. Pitt-Francis, M. O. Bernabeu, J. Cooper, et al. Chaste: using agile programming techniques to develop computational biology software, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1878), 3111-3136. |
[32] | J. Juno, A. Hakim, J. TenBarge, et al. Discontinuous Galerkin algorithms for fully kinetic plasmas, J. Comput. Phys., 353 (2018), 110-147. doi: 10.1016/j.jcp.2017.10.009 |
[33] | S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal., 36 (1999), 1549-1570. doi: 10.1137/S0036142997329797 |