AIMS Mathematics, 2019, 4(3): 497-505. doi: 10.3934/math.2019.3.497

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Hamilton’s gradient estimate for fast diffusion equations under geometric flow

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Suppose that M is a complete noncompact Riemannian manifold of dimension n. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfrac{4}{n+8}<m<1\]on $M\times (-\infty ,0]$ under the geometric flow.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Bailesteanu, X. D. Cao, A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal., 258 (2010), 3517–3542.    

2. L. R. Evangelista, E. K. Lenzi, Fractional diffusion equations and anomalous diffusion, Cambridge University Press, 2018.

3. S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008–1023.    

4. H. Li, H. Bai, G. Zhang, Hamiltons gradient estimates for fast diffusion equations under the Ricci flow, J. Math. Anal. Appl., 444 (2016), 1372–1379.    

5. G. A. Mendes, M. S. Ribeiro, R. S. Mendes, et al. Nonlinear Kramers equation associated with nonextensive statistical mechanics, Phys. Rev. E, 91 (2015), 052106.    

6. P. Li, S.-T. Yau, On the parabolic kernel of the Schrdinger operator, Acta Math., 156 (1986), 153–201.    

7. S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pac. J. Math., 243 (2009), 165–180.    

8. J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pac. J. Math., 253 (2011), 489–510.    

9. C. Tsallis, D. J. Bukman, Anomalous diffusion in the presence of external forces: Exact timedependent solutions and their thermostatistical basis, Phys. Rev. E, 54 (1996).

10. J. L. Vzquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Ser. Math. Appl., Vol. 33, Oxford University Press, Oxford, 2006.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved