AIMS Mathematics, 2019, 4(3): 437-462. doi: 10.3934/math.2019.3.437

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Discontinuous solutions for the short-pulse master mode-locking equation

1 Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy
2 Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

The short-pulse master mode-locking equation is a model for ultrafast pulse propagation in a mode-locked laser cavity in the few-femtosecond pulse regime, that is a nonlinear evolution equation. In this paper, we prove the wellposedness of the Cauchy problem associated with this equation within a class of discontinuous solutions.
  Figure/Table
  Supplementary
  Article Metrics

References

1. S. Amiranashvili, A. G. Vladimirov and U. Bandelow, A model equation for ultrashort optical pulses around the zero dispersion frequency, Eur. Phys. J. D, 58 (2010), 219-226.    

2. S. Amiranashvili, A. G. Vladimirov and U. Bandelow, Solitary-wave solutions for few-cycle optical pulses, Phys. Rev. A, 77 (2008), 063821.

3. R. Beals, M. Rabelo and K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151.    

4. N. R. Belashenkov, A. A. Drozdov, S. A. Kozlov, et al. Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion, J. Opt. Technol., 75 (2008), 611-614.    

5. Y. Chung, C. K. R. T. Jones, T. Schäfer, et al. Ultra-short pulses in linear and nonlinear media, Nonlinearity, 18 (2005), 1351-1374.    

6. G. M. Coclite and L. di Ruvo, Discontinuous solutions for the generalized short pulse equation, Evol. Equ. Control Theory, 2019, in press.

7. G. M. Coclite and L. di Ruvo, A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation, 2019, in press.

8. G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differ Equations, 256 (2014), 3245-3277.    

9. G. M. Coclite and L. di Ruvo, Dispersive and diffusive limits for Ostrovsky-Hunter type equations, NoDEA Nonlinear Differ., 22 (2015), 1733-1763.    

10. G. M. Coclite and L. di Ruvo, Oleinik type estimates for the Ostrovsky-Hunter equation, J. Math. Anal. Appl., 423 (2015), 162-190.    

11. G. M. Coclite and L. di Ruvo, Well-posedness results for the short pulse equation, Z. Angew. Math. Phys., 66 (2015), 1529-1557.    

12. G. M. Coclite and L. di Ruvo, Wellposedness of bounded solutions of the non-homogeneous initial boundary for the short pulse equation, Boll. Unione Mat. Ital., 8 (2015), 31-44.    

13. G. M. Coclite and L. di Ruvo, On the well-posedness of the exp-Rabelo equation, Ann. Mat. Pura Appl., 195 (2016), 923-933.    

14. G. M. Coclite and L. di Ruvo, Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion, J. Evol. Equ., 16 (2016), 365-389.    

15. G. M. Coclite and L. di Ruvo, Convergence of the regularized short pulse equation to the short pulse one, Math. Nachr., 291 (2018), 774-792.    

16. G. M. Coclite and L. di Ruvo, Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation, Milan J. Math., 86 (2018), 31-51.    

17. G. M. Coclite, L. di Ruvo and K. H. Karlsen, Some wellposedness results for the Ostrovsky-Hunter equation, In: Chen GQ., Holden H., Karlsen K. Editors, Hyperbolic Conservation Laws and Related Analysis with Applications, Heidelberg: Springer, 49 (2014), 143-159.    

18. G. M. Coclite, L. di Ruvo and K. H. Karlsen, The initial-boundary-value problem for an Ostrovsky-Hunter type equation, In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018, 97-109.

19. G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069.    

20. G. M. Coclite, H. Holden and K. H. Karlsen, Wellposedness for a parabolic-elliptic system, Discrete Contin. Dyn. Syst., 13 (2005), 659-682.    

21. G. M. Coclite, J. Ridder and N. H. Risebro, A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain, BIT Numer. Math., 57 (2017), 93-122.    

22. N. Costanzino, V. Manukian and C. K. R. T. Jones, Solitary waves of the regularized short pulse and Ostrovsky equations, SIAM J. Math. Anal., 41 (2009), 2088-2106.    

23. S. T. Cundiff, Femtosecond comb technology, J. Korean Phys. Soc., 48 (2006), 1181-1187.

24. S. T. Cundiff, Better by half, Nat. Phys., 3 (2007), 16 pages.

25. S. T. Cundiff, Rulers of light, Nat. Photonics, 13 (2019), 137-137.    

26. M. Davidson, Continuity properties of the solution map for the generalized reduced Ostrovsky equation, J. Differ. Equations, 252 (2012), 3797-3815.    

27. L. di Ruvo, Discontinuous solutions for the Ostrovsky-Hunter equation and two phase flows, PhD Thesis, University of Bari, 2013.

28. J. M. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78 (2006), 1135-1184.    

29. R. Ell, G. Angelow, W. Seitz, et al. Quasi-synchronous pumping of modelocked few-cycle Titanium Sapphire lasers, Opt. Express, 13 (2005), 9292-9298.    

30. E. D. Farnum and J. N. Kutz, Master mode-locking theory for few-femtosecond pulses, Opt. Lett., 35 (2010), 3033-3035.    

31. E. D. Farnum and J. N. Kutz, Short-pulse perturbation theory, J. Opt. Soc. Am. B, 30 (2013), 2191-2198.    

32. E. D. Farnum and J. N. Kutz, Dynamics of a low-dimensional model for short pulse mode locking, Photonics, 2 (2015), 865-882.    

33. H. A. Haus, Mode-locking of lasers, IEEE J. Sel. Top. Quantum Electron., 6 (2000), 1173-1185.    

34. H. A. Haus, J. G. Fujimoto and E. P. Ippen, Structures for additive pulse mode locking, J. Opt. Soc. Am. B, 8 (1991), 2068-2076.    

35. M. Hentschel, R. Kienberger, C. Spielmann, et al. Attosecond metrology, Nature, 414 (2001), 509-513.    

36. F. X. Kärtner, U. Morgner, R. Ell, et al. Ultrabroadband double-chirped mirror pairs for generation of octave spectra, J. Opt. Soc. Am. B, 18 (2001), 882-885.    

37. U. Keller, Ultrafast solid-state lasers, In: Progress in Optics, Elsevier, 46 (2004), 1-115.    

38. S. A. Kozlov and S. V. Sazonov, Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media, J. Exp. Theor. Phys., 84 (1997), 221-228.    

39. F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys., 81 (2009), 163-234.    

40. S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.

41. C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differ. Equations, 190 (2003), 439-465.    

42. H. Leblond and D. Mihalache, Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models, Phys. Rev. A, 79 (2009), 063835.

43. H. Leblond and D. Mihalache, Models of few optical cycle solitons beyond the slowly varying envelope approximation, Phys. Rep., 523 (2013), 61-126.    

44. H. Leblond and F. Sanchez, Models for optical solitons in the two-cycle regime, Phys. Rev. A, 67 (2003), 013804-0138048.    

45. P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1999), 213-230.    

46. Y. Liu, D. Pelinovsky and A. Sakovich, Wave breaking in the short-pulse equation, Dynam. Part. Differ. Eq., 6 (2009), 291-310.    

47. F. Murat, L'injection du cȏne positif de $H^{-1}$ dans $W^{-1,\,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl., 60 (1981), 309-322.

48. S. P. Nikitenkova, Y. A. Stepanyants and L. M. Chikhladze, Solutions of a modified Ostrovskiĭ equation with a cubic nonlinearity, J. Appl. Math. Mech., 64 (2000), 267-274.    

49. D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Commun. Partial Differ. Equations, 35 (2010), 613-629.    

50. D. Pelinovsky and G. Schneider, Rigorous justification of the short-pulse equation, NoDEA Nonlinear Differ., 20 (2013), 1277-1294.    

51. M. Pietrzyk, I. Kanattšikov and U. Bandelow, On the propagation of vector ultra-short pulses, J. Nonlinear Math. Phys., 15 (2008), 162-170.    

52. M. L. Rabelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248.    

53. A. Sakovich and S. Sakovich, On transformations of the Rabelo equations, SIGMA, 3 (2007), Article ID: 086, 1-8.

54. K. J. Schafer, M. B. Gaarde, A. Heinrich, et al. Strong field quantum path control using attosecond pulse trains, Phys. Rev. Lett., 92 (2004), 023003.

55. T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D, 196 (2004), 90-105.    

56. M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Commun. Partial Differ. Equations, 7 (1982), 959-1000.    

57. D. Serre, $L^1$-stability of constants in a model for radiating gases, Commun. Math. Sci., 1 (2003), 197-205.    

58. Y. Silberberg, Physics at the attosecond frontier, Nature, 414 (2001), 494-495.    

59. S. A. Skobelev, D. V. Kartashov and A. V. Kim, Few-optical-cycle solitons and pulse self-compression in a Kerr medium, Phys. Rev. Lett., 99 (2007), 203902.

60. A. Stefanov, Y. Shen and P. G. Kevrekidis, Well-posedness and small data scattering for the generalized Ostrovsky equation, J. Differ. Equations, 249 (2010), 2600-2617.    

61. L. Tartar, Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Boston: Pitman, Mass.-London, 39 (1979), 136-212.

62. N. Tsitsas, T. Horikis, Y. Shen, et al. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials, Phys. Lett. A, 374 (2010), 1384-1388.    

63. K. K. Victor, B. B. Thomas and T. C. Kofane, On the conversion of high-frequency soliton solutions to a (1+1)-dimensional nonlinear partial differential evolution equation, Chinese Phys. Lett., 25 (2008), 1972-1975.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved