AIMS Mathematics, 2019, 4(2): 231-241. doi: 10.3934/math.2019.2.231

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Direct similarity reductions and new exact solutions of the short pulse equation

School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong, 510006, P.R. China

In this paper, we present some similarity reductions of the short pulse equation(SPE) based on the direct similarity reduction method proposed by Clarkson and Kruskal. These similarity reductions have a more general form than those obtained by using the Lie group method. Especially, we obtain one new similarity reduction which can not be obtained by Lie group method. Furthermore, we derive one new exact analytic solutions by the method of undetermined coefficients.
  Figure/Table
  Supplementary
  Article Metrics

References

1. T. Schäfer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196 (2004), 90-105.    

2. Y. Chung, C. K. R. T. Jones, T. Schäfer, et al. Ultra-short pulses in linear and nonlinear media, Nonlinearity, 18 (2005), 1351-1374.    

3. M. L. Robelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248.    

4. R. Beals, M. Rabelo, K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151.    

5. A. Sakovich, S. Sakovich, The short pulse equation is integrable, J. Phys. Soc. Jpn., 74 (2005), 239-241.    

6. A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A, 39 (2006), L361-L367.

7. E. J. Parkes, A note on loop-soliton solutions of the short pulse equation, Phys. Lett. A, 374 (2010), 4321-4323.    

8.E. J. Parkes, Some periodic and solitary traveling-wave solutions of the short-pulse equation, Chaos Soliton. Fract., 38 (2008), 154-159.    

9.H. Z. Liu, J. B. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonlinear Anal. Theor., 71 (2009), 2126-2133.    

10. K. Fakhar, G. W. Wang, A. H. Kara, Symmetry reductions and conservation laws of the short pulse equation, Optik, 127 (2016), 10201-10207.    

11.S. L. Xie, X. C. Hong, B. Gao, The periodic traveling-wave solutions of the short-pulse equation, Appl. Math. Comput., 218 (2011), 2542-2548.

12. Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, J. Phy. Soc. Jpn., 76 (2007), 084003.

13. Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys., 49 (2008), 073508.

14. Y. L. Ma, B. Q. Li, Some new Jacobi elliptic function solutions for the short-pulse equation via a direct symbolic computation method, J. Appl. Math. Comput., 40 (2012), 683-690.    

15.B. F. Feng, Complex short pulse and coupled complex short pulse equations, Physica D, 297 (2015), 62-75.    

16.B. F. Feng, L. M. Ling, Z. N. Zhu, Defocusing complex short-pulse equation and its multi-dark-soliton solution, Phys. Rev. E, 93 (2016), 052227.

17.L. M. Ling, B. F. Feng, Z. N. Zhu, Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation, Physica D, 327 (2016), 13-29.    

18.S. Sakovich, Transformation and integrability of a generalized short pulse equation, Comm. Nonlinear Sci. Numer. Simulat., 39 (2016), 21-28.    

19.S. F. Shen, B. F. Feng, Y. Ohta, From the real and complex coupled dispersionless equations to the real and complex short pulse equations, Stud. Appl. Math., 136 (2016), 64-88.    

20.S. F. Shen, B. F. Feng, Y. Ohta, A modified complex short pulse equation of defocusing type, J. Nonlinear Math. Phy., 24 (2017), 195-209.    

21.Q. L. Zha, The interaction solitons for the complex short pulse equation, Comm. Nonlinear Sci. Numer. Simulat., 47 (2017), 379-393.    

22. R. K. Gupta, V. Kumar, R. Jiwari, Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients, Nonlinear Dyn., 79 (2015), 455-464.    

23.B. F. Feng, K. I. Maruno, Y. Ohta, Integrable discretizations of the short pulse equation, J. Phys. A: Math. Theor., 43 (2010), 085203.

24.J. C. Brunelli, The short pulse hierarchy, J. Math. Phys., 46 (2005), 123507.

25. H. Z. Liu, J. B. Li, L. Liu, Complete group classification and exact solutions to the extended short pulse equation, Int. J. Nonlin. Mechs., 47 (2012), 694-698.    

26. W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2667-2678.    

27.B. F. Feng, An integrable coupled short pulse equation, J. Phys. A: Math. Theor., 45 (2012), 1262-1275.

28.V. Kumar, R. K. Gupta, R. Jiwari, Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation, Chin. Phys. B, 22 (2013), 050201.

29. B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149-155.    

30.Z. Popowicz, Lax representations for matrix short pulse equations, J. Math. Phys., 58 (2017), 103506.

31.A. N. W. Hone, V. Novikov, J. P. Wang, Generalizations of the short pulse equation, Lett. Math. Phys., 108 (2018), 927-947.

32. P. A. Clarkson, M. D. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30 (1989), 2201-2213.    

33. P. A. Clarkson, New similarity solutions for the modified Boussinesq equation, J. Phys. A: Math. Gen., 22 (1989), 2355-2367.    

34.S. Y. Lou, A note on the new similarity reductions of the Boussinesq equation, Phys. Lett. A, 151 (1990), 133-135.    

35.C. Z. Qu, F. M. Mahomed, An extension of the direct method via an application, Quaest. Math., 24 (2001), 111-122.    

36.D. J. Arrigo, P. Broadbridge, J.M. Hill, Nonclassical symmetry solutions and the methods of Bluman-Cole and Clarkson-Kruskal, J. Math. Phys., 34 (1993), 4692-4703.    

37.B. M. Vaganan, R. Asokan, Direct similarity analysis of generalized Burgers equations and perturbation solutions of Euler-Painlevé transcendents, Stud. Appl. Math., 111 (2003), 435-451.    

38. M. C. Nucci, P. A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation, Phys. Lett. A, 164 (1992), 49-56.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved