AIMS Mathematics, 2019, 4(2): 308-315. doi: 10.3934/math.2018.2.308

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Identities concerning k-balancing and k-Lucas-balancing numbers of arithmetic indexes

Department of Mathematics, Sambalpur University, Sambalpur-768019, India

In this article, we derive some identities involving k balancing and k-Lucas-balancing numbers of arithmetic indexes, say an + p, where a and p are some fixed integers with 0≤p≤a-1.
  Article Metrics


1. A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98–105.

2. A. Berczes, K. Liptai and I. Pink, On generalized balancing sequences, Fibonacci Quart., 48 (2010), 121–128.

3. R. P. Finkelstein, The house problem, Amer. Math. Monthly, 72 (1965), 1082–1088.

4. T. Komatsu and L. Szalay, Balancing with binomial coefficients, Int. J. Number Theory, 10 (2014), 1729–1742.

5. K. Liptai, Fibonacci balancing numbers, Fibonacci Quart., 42 (2004), 330–340.

6. K. Liptai, F. Luca, Á. Pintér and L. Szalay, Generalized balancing numbers, Indagat. Math., 20 (2009), 87–100.

7. G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194 (2009), 185–189.

8. B. K. Patel, N. Irmak and P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20 (2018), 59–72.

9. P. K. Ray, On the properties of k-balancing and k-Lucas-balancing numbers, Acta Commentat. Univ. Tartu. Math., 21 (2017), 259–274.

10. P. K. Ray, Balancing polynomials and their derivatives, Ukr. Math. J., 69 (2017), 646–663.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved