Research article

Correlation between bioactivity and thermodynamic stability of glasses of the molar formula 20.15[(2.038 + x)SiO2-(1.457 - x)Na2O]-2.6P2O5-25.73CaO-1.22MgO

  • Received: 06 March 2020 Accepted: 08 June 2020 Published: 16 June 2020
  • The purpose of this study is to establish the influence of composition on the glass transition temperature, density, enthalpy of dissolution in an acid bath and bioactivity in glasses of the molar formula 20.15[(2.038 + x)SiO2-(1.457 − x)Na2O]-2.6P2O5-25.73CaO-1.22MgO. It is also a question of correlating bioactivity and stability in this oxide glass system. Nine samples were prepared by high temperature melting followed by quenching. These samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), dissolution calorimetry and pycnometry. Their bioactivity was estimated using the Anderson model. The results indicate that the effect of magnesium composition can lead to a decrease in the glass transition temperature (Tg). These results also show that a decrease in glass stability leads to a decrease in bioactivity.

    Citation: Amadou Kouyaté, Yapo Hermann Aristide Yapi, Aliou Pohan, Ange Privat Ahoussou, Albert Trokourey. Correlation between bioactivity and thermodynamic stability of glasses of the molar formula 20.15[(2.038 + x)SiO2-(1.457 - x)Na2O]-2.6P2O5-25.73CaO-1.22MgO[J]. AIMS Materials Science, 2020, 7(3): 323-337. doi: 10.3934/matersci.2020.3.323

    Related Papers:

  • The purpose of this study is to establish the influence of composition on the glass transition temperature, density, enthalpy of dissolution in an acid bath and bioactivity in glasses of the molar formula 20.15[(2.038 + x)SiO2-(1.457 − x)Na2O]-2.6P2O5-25.73CaO-1.22MgO. It is also a question of correlating bioactivity and stability in this oxide glass system. Nine samples were prepared by high temperature melting followed by quenching. These samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), dissolution calorimetry and pycnometry. Their bioactivity was estimated using the Anderson model. The results indicate that the effect of magnesium composition can lead to a decrease in the glass transition temperature (Tg). These results also show that a decrease in glass stability leads to a decrease in bioactivity.


    加载中


    [1] Hench LL (1999) Bioactive glasses and glass-ceramics. Mater Sci Forum 293: 37-64.
    [2] Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 21: 61-2175.
    [3] Vitale-Brovarone C, Vernè E, Bosetti M, et al. (2005) Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mater Sci-Mater M 16: 909-917. doi: 10.1007/s10856-005-4425-0
    [4] Xia W, Chang J (2008) Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non-Cryst Solids 354: 1338-1341. doi: 10.1016/j.jnoncrysol.2006.10.084
    [5] Rajendran V, Rajkumar G, Aravindan S, et al. (2010) Analysis of physical properties and hydroxyapatite precipitation in vitro of TiO2-containing phosphate-based glass systems. J Am Ceram Soc 93: 4053-4060. doi: 10.1111/j.1551-2916.2010.04009.x
    [6] Rajkumar G, Aravindan S, Rajendran V (2010) Structural analysis of zirconia-doped calcium phosphate glasses. J Non-Cryst Solids 356: 1432-1438. doi: 10.1016/j.jnoncrysol.2010.05.003
    [7] Navarro M, Ginebra MP, Clement J, et al. (2003) Physico-chemical degradation of soluble phosphate glasses stabilized with TiO2 for medical applications. J Am Ceram Soc 86: 1345-1352. doi: 10.1111/j.1151-2916.2003.tb03474.x
    [8] Catauro M, Raucci MG, de Gaetano F, et al. (2004) Antibacterial and bioactive silver-containing Na2O-CaO-2SiO2 glass prepared by sol-gel method. J Mater Sci-Mater M 15: 831-837. doi: 10.1023/B:JMSM.0000032825.51052.00
    [9] He LY, Zhang XM, Liu B, et al. (2016) Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res 49: 52-57.
    [10] Watts SJ, Hill RG, O'Donnell MD, et al. (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356: 517-524. doi: 10.1016/j.jnoncrysol.2009.04.074
    [11] Hmood F, Goerke O, Schmid F (2018) Chemical composition refining of bioactive glass for better processing features, part I. Biomed Glasses 4: 82-94.
    [12] Jha P, Singh K (2016) Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2-K2O-CaO-MgO glasses. Ceram Int 42: 436-444. doi: 10.1016/j.ceramint.2015.08.128
    [13] Barrere F, van Blitterswijk CD, de Groot K, et al. (2002) Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials 23: 1921-1930. doi: 10.1016/S0142-9612(01)00318-0
    [14] Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 27: 25-34. doi: 10.1002/jbm.820270105
    [15] Strnad Z (1992) Role of the glass phase in bioactive glass-ceramics. Biomaterials 13: 317-321. doi: 10.1016/0142-9612(92)90056-T
    [16] Hill R (1996) An alternative view of the degradation of bioglass. J Mater Sci Lett 15: 1122-1125. doi: 10.1007/BF00539955
    [17] Moya JS, Tomsia AP, Pazo A, et al. (1994) In vitro formation of hydroxylapatite layer in a MgO-containing glass. J Mater Sci-Mater M 5: 529-532. doi: 10.1007/BF00124885
    [18] Oliveira JM, Correia RN, Fernandes MH, et al. (2000) Influence of the CaO/MgO ratio on the structure of phase-separated glasses: A solid state 29Si and 31P MAS NMR study. J Non-Cryst Solids 265: 221-229. doi: 10.1016/S0022-3093(99)00957-6
    [19] Derrien AC, Oudadesse H, Martin S, et al. (2004) Mineralization kinetics of various implanted bioceramics. Nucl Instrum Meth B 226: 281-290. doi: 10.1016/j.nimb.2004.06.014
    [20] Kashyap S, Griep K, Nychka JA (2011) Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5. Mater Sci Eng C-Mater 31: 762-769. doi: 10.1016/j.msec.2010.06.019
    [21] Avadhesh Kumar Y, Chandkiram G, Prabhakar S (2012) Crystallization kinematics and dielectric behavior of (Ba, Sr)TiO3 borosilicate glass ceramics. NJGC 2: 126-131. doi: 10.4236/njgc.2012.23018
    [22] Kouyate A, Ahoussou AP, Rogez J, et al. (2013) Application of solution calorimetry to the prediction of 20.15[(2.038 + x)SiO2-(1.457 − x)Na2O]-2.6-P2O5-26.95CaO glass bioactivity. ACES 3: 123-129.
    [23] Ahoussou AP, Rogez J, Kone A (2006) Enthalpy of mixing in 0.8[xB2O3-(1 − x)P2O5]-0.2Na2O glasses at 298 K. Thermochim Acta 441: 96-100.
    [24] Ganteaume M, Coten M, Decressac M(1991) Un nouveau calorimètre de solution: Le calsol. Thermochim Acta 178: 81-98.
    [25] Ahoussou AP, Rogez J, Kone A (2006) Enthalpy of mixing in 0.8[xB2O3-(1 − x)SiO2]-0.2K2O melts at 973K. Thermochim Acta 447: 109-111.
    [26] Ahoussou AP, Rogez J, Kone A (2007) Thermodynamical miscibility in 0.8[xB2O3-(1 − x)P2O5]-0.2K2O glasses. J Non-Cryst Solids 353: 271-275.
    [27] Ahoussou AP, Rogez J, Kone A (2007) Solution calorimetric study of mixing enthalpy in 0.8[xB2O3-(1 − x)SiO2]-0.2K2O glasses at 298 K. Mater Res Bull 42: 1577-1581.
    [28] Yamasaki Y, Yoshida Y, Okazaki M, et al. (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62: 99-105. doi: 10.1002/jbm.10220
    [29] Yamasaki Y, Yoshida Y, Okazaki M, et al. (2003) Action of FGMgCO3 Ap-collagen composite in promoting bone formation. Biomaterials 24: 4913-4920. doi: 10.1016/S0142-9612(03)00414-9
    [30] Andersson OH, Liu G, Karlsson KH, et al. (1990) In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. J Mater Sci-Mater M 1: 219-227.
    [31] Andersson OH, Karlsson KH, Kangasniemi K, et al. (1988) Models for physical properties and bioactivity of phosphate opal glasses. Glastech Ber-Glass 61: 300-305.
    [32] Hench LL (1991) Bioceramics: From concept to clinic. J Am Ceram Soc 74: 1487-1510. doi: 10.1111/j.1151-2916.1991.tb07132.x
    [33] Wallace KE, Hill RG, Pembroke JT, et al. (1999) Influence of sodium oxide content on bioactive glass properties. J Mater Sci-Mater M 10: 697. doi: 10.1023/A:1008910718446
    [34] Brink M (1997) The influence of alkali and alkaline earths on the working range for bioactive glasses. J Biomed Mater Res 36: 109-117. doi: 10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D
    [35] Shelby JE (1994) Rare earths as major components in oxide glasses, Key Engineering Materials, Swizerland: Trans Tech Publications, 94-95: 1-42.
    [36] Watts SJ, Hill RG, O'Donnell MD, et al. (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356: 517-524. doi: 10.1016/j.jnoncrysol.2009.04.074
    [37] Scholze H (1990) Glass: Nature, Structure and Properties, Springer-Verlag.
    [38] Varshneya AK (1994) Fundamentals of Inorganic Glasses, Academic Press.
    [39] Barbieri L, Corradi AB, Leonelli C, et al. (1997) Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Mater Res Bull 32: 637-648. doi: 10.1016/S0025-5408(97)00029-9
    [40] Islam MT, Felfel RM, Abou Neel EA, et al. (2017) Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. J Tissue Eng 8: 1-16.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2749) PDF downloads(252) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog