Research article Topical Sections

Electrospinning process control for fiber-structured poly(Bisphenol A-co-Epichlorohydrin) membrane

  • Received: 20 December 2019 Accepted: 20 March 2020 Published: 25 March 2020
  • Porous and fiber structures are utilized to create lightweight materials for many applications. Poly(bisphenol A-co-epichlorohydrin) PBE or phenoxy resin is a widely used thermoplastic resin in thermoplastic, blends, and polymer matrices. In this article, PBE was selected as a model thermoplastic to fabricate a porous membrane with suitable structure and properties through an electrospinning process. The morphology of the electrospun membrane was effectively controlled by adjusting solution concentration and solvent composition and regulating acceleration potential, while keeping the solution feed rate and tip-to-collector distance at specific values. It was observed that the elastic modulus and tensile strength of the obtained porous PBE membranes were dependent on structure and form. With consistent fiber morphology, the research process obtained a relatively high elastic modulus, tensile strength, and density at 9.125±2.573 GPa, 1.260±0.195 MPa, and 0.420±0.056 g/cm3, respectively. Thermal analysis showed insignificant differences in the thermal stability between the electrospun samples and raw materials.

    Citation: Wisawat Keaswejjareansuk, Xiang Wang, Richard D. Sisson, Jianyu Liang. Electrospinning process control for fiber-structured poly(Bisphenol A-co-Epichlorohydrin) membrane[J]. AIMS Materials Science, 2020, 7(2): 130-143. doi: 10.3934/matersci.2020.2.130

    Related Papers:

  • Porous and fiber structures are utilized to create lightweight materials for many applications. Poly(bisphenol A-co-epichlorohydrin) PBE or phenoxy resin is a widely used thermoplastic resin in thermoplastic, blends, and polymer matrices. In this article, PBE was selected as a model thermoplastic to fabricate a porous membrane with suitable structure and properties through an electrospinning process. The morphology of the electrospun membrane was effectively controlled by adjusting solution concentration and solvent composition and regulating acceleration potential, while keeping the solution feed rate and tip-to-collector distance at specific values. It was observed that the elastic modulus and tensile strength of the obtained porous PBE membranes were dependent on structure and form. With consistent fiber morphology, the research process obtained a relatively high elastic modulus, tensile strength, and density at 9.125±2.573 GPa, 1.260±0.195 MPa, and 0.420±0.056 g/cm3, respectively. Thermal analysis showed insignificant differences in the thermal stability between the electrospun samples and raw materials.


    加载中


    [1] Pang X, Zhuang X, Tang Z, et al. (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5: 1125-1136. doi: 10.1002/biot.201000135
    [2] Abdelrasoul A, Doan H, Lohi A, et al. (2015) Morphology control of polysulfone membranes in filtration processes: a critical review. ChemBioEng Rev 2: 22-43. doi: 10.1002/cben.201400030
    [3] Gabor H (2000) Polymer films in sensor applications: A review of present uses and future possibilities. Sens Rev 20: 98-105. doi: 10.1108/02602280010319169
    [4] Kang GD, Cao YM (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review. J Memb Sci 463: 145-165. doi: 10.1016/j.memsci.2014.03.055
    [5] Wanasekara N, Chalivendra V, Calvert P (2011) Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation. Polym Degrad Stab 96: 432-437. doi: 10.1016/j.polymdegradstab.2011.01.021
    [6] Alexander JV, Neely JW, Grulke EA (2014) Effect of chemical Functionalization on the mechanical properties of polypropylene hollow fiber membranes. J Polym Sci Pol Phys 52: 1366-1373. doi: 10.1002/polb.23572
    [7] Ye Z, Zhu S, Wang WJ, et al. (2003) Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. J Polym Sci Pol Phys 41: 2433-2443. doi: 10.1002/polb.10588
    [8] Zhang F, Endo T, Qiu W, et al. (2002) Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene. J Appl Polym Sci 84: 1971-1980. doi: 10.1002/app.10428
    [9] Shubhra QTH, Alam AKMM, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: A review. J Thermoplast Compos 26: 362-391. doi: 10.1177/0892705711428659
    [10] Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A-Appl S 40: 404-412. doi: 10.1016/j.compositesa.2009.01.002
    [11] Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7: 216-223. doi: 10.1088/0957-4484/7/3/009
    [12] Yoshimoto H, Shin YM, Terai H, et al. (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24: 2077-2082. doi: 10.1016/S0142-9612(02)00635-X
    [13] Jung JW, Lee CL, Yu S, et al. (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4: 703-750. doi: 10.1039/C5TA06844D
    [14] Zhang F, Yuan C, Zhu J, et al. (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23: 3909-3915. doi: 10.1002/adfm.201203844
    [15] Formo E, Lee E, Campbell D, et al. (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8: 668-672. doi: 10.1021/nl073163v
    [16] Gopal R, Kaur S, Ma Z, et al. (2006) Electrospun nanofibrous filtration membrane. J Memb Sci 281: 581-586. doi: 10.1016/j.memsci.2006.04.026
    [17] Choi SS, Lee YS, Joo CW, et al. (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochimica Acta 50: 339-343. doi: 10.1016/j.electacta.2004.03.057
    [18] Vanangamudi A, Yang X, Duke MC, et al. (2019) Nanofibers for membrane applications. In: Barhoum A, Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham, 937-960.
    [19] Yoon K, Kim K, Wang X, et al. (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47: 2434-2441. doi: 10.1016/j.polymer.2006.01.042
    [20] Deitzel JM, Kleinmeyer JD, Hirvonen JK, et al. (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42: 8163-8170. doi: 10.1016/S0032-3861(01)00336-6
    [21] Zhang C, Yuan X, Wu L, et al. (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41: 423-432. doi: 10.1016/j.eurpolymj.2004.10.027
    [22] Cho D, Zhou H, Cho Y, et al. (2010) Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer 51: 6005-6012. doi: 10.1016/j.polymer.2010.10.028
    [23] Al-Attabi R, Morsi YS, Schütz JA, et al. (2018) Electrospun membranes for airborne contaminants capture. In: Barhoum A, Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham, 1-18.
    [24] Iriarte MA, Iruin JJ, Eguiazábal JI (1989) Thermal decomposition of miscible phenoxy/poly(ethylene oxide) blends. J Mater Sci 24: 1021-1024. doi: 10.1007/BF01148793
    [25] Zhang R, Luo X, Ma D (1995) Miscibility of polyhydroxy ether of bisphenol-A with ethylene terephthalate-caprolactone copolyesters. Eur Polym J 31: 1011-1014. doi: 10.1016/0014-3057(95)00048-8
    [26] Kim BK, Choi CH (1996) Melt blends of poly(methyl methacrylate) with a phenoxy. Polymer 37: 807-812. doi: 10.1016/0032-3861(96)87257-0
    [27] Corres MA, Zubitur M, Cortazar M, et al. (2011) Thermal and thermo-oxidative degradation of poly(hydroxy ether of bisphenol-A) studied by TGA/FTIR and TGA/MS. J Anal Appl Pyrol 92: 407-416. doi: 10.1016/j.jaap.2011.08.002
    [28] Guo Q (1995) Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends. Polymer 36: 4753-4760. doi: 10.1016/0032-3861(95)99290-B
    [29] Jeong HM, Ahn BK, Kim BK (2001) Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur Polym J 37: 2245-2252. doi: 10.1016/S0014-3057(01)00123-9
    [30] Yilmaz T, Özarslan Ö, Yildiz E, et al. (1998) Effects of nonreactive resins on the properties of a UV-curable methacrylated urethane resin. J Appl Polym Sci 69: 1837-1845. doi: 10.1002/(SICI)1097-4628(19980829)69:9<1837::AID-APP19>3.0.CO;2-I
    [31] Qipeng G, Jinyu H, Binyao L, et al. (1991) Blends of phenolphthalein poly(ether ketone) with phenoxy and epoxy resin. Polymer 32: 58-65. doi: 10.1016/0032-3861(91)90562-W
    [32] Choi GD, Kim SH, Jo WH, et al. (1995) The morphology and mechanical properties of phenoxy/liquid crystalline polymer blends and the effect of transesterification. J Appl Polym Sci 55: 561-569. doi: 10.1002/app.1995.070550403
    [33] Wu H, Ma CM, Lin J (1997) Processability and properties of phenoxy resin toughened phenolic resin composites. J Appl Polym Sci 63: 911-917. doi: 10.1002/(SICI)1097-4628(19970214)63:7<911::AID-APP11>3.0.CO;2-U
    [34] Yang BX, Shi JH, Pramoda KP, et al. (2007) Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology 18: 125606. doi: 10.1088/0957-4484/18/12/125606
    [35] Goh HW, Goh SH, Xu GQ, et al. (2003) Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite. Chem Phys Lett 373: 277-83. doi: 10.1016/S0009-2614(03)00621-3
    [36] Ueki T, Nojima K, Asano K, et al. (1998) Toughening of epoxy resin systems for cryogenic use. Adv Cryog Eng Mater 44: 277-283.
    [37] Ueki T, Nishijima S, Izumi Y (2005) Designing of epoxy resin systems for cryogenic use. Cryogenics 45: 141-148. doi: 10.1016/j.cryogenics.2004.07.002
    [38] Bhat AH, Abdul Khalil HPS, Bhat IUH, et al. (2011) Development and characterization of novel modified red mud nanocomposites based on poly(hydroxy ether) of bisphenol A. J Appl Polym Sci 119: 515-522. doi: 10.1002/app.32654
    [39] Yi JW, Lee W, Seong DG, et al. (2016) Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites. Compos Part A-Appl S 87: 212-219. doi: 10.1016/j.compositesa.2016.04.028
    [40] Beier U, Sandler JKW, Altstadt V, et al. (2009) Mechanical performance of carbon fibre-reinforced composites based on stitched and bindered preforms. Compos Part A-Appl S 40: 1756-1763. doi: 10.1016/j.compositesa.2009.08.012
    [41] Beier U, Wolff-Fabris F, Fischer F, et al. (2008) Mechanical performance of carbon fibre-reinforced composites based on preforms stitched with innovative low-melting temperature and matrix soluble thermoplastic yarns. Compos Part A-Appl S 39: 1572-1581. doi: 10.1016/j.compositesa.2008.06.003
    [42] Chemical Retrieval on the Web (CROW), Polymer properties database: epoxy or phenoxy resin, 2018. Available from: https://polymerdatabase.com/polymers/bisphenol-adiglycidyletherepoxyresin.html.
    [43] Lee SG, Han KS, Joo CW, et al. (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50: 339-343. doi: 10.1016/j.electacta.2004.03.057
    [44] Hao J, Lei G, Li Z, et al. (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Memb Sci 428: 11-16. doi: 10.1016/j.memsci.2012.09.058
    [45] Zhang J, Liu Z, Kong Q, et al. (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Inter 5: 128-134. doi: 10.1021/am302290n
    [46] Yanilmaz M, Dirican M, Zhang X (2018) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133: 501-508.
    [47] U.S. National Library of Medicine, Acetone, 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/180.
    [48] U.S. National Library of Medicine, N,N-Dimethylformamide, 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6228.
    [49] Thompson CJ, Chase GG, Yurin AL, et al. (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymers 48: 6913-6922. doi: 10.1016/j.polymer.2007.09.017
    [50] Shawon J, Sung C (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci 39: 4605-4613. doi: 10.1023/B:JMSC.0000034155.93428.ea
    [51] Lin J, Ding B, Yu J, et al. (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Inter 2: 521-528. doi: 10.1021/am900736h
    [52] Gill DS, Sherma AN (1982) Acetone + NN-Dimethylformamide solvent system. Part 2-Conductance studies of some electrolytes in Acetone + NN-Dimethylformamide mixtures at 25 ºC. J Chem Soc Faraday Trans 78: 465-474.
    [53] Gill DS, Schneider H (1980) Acetone-N,N-dimethylformamide solvent system. Part 1-properties of Acetone-N,N-dimethylformamide binary mixtures. Indian J Chem 19A: 313-316.
    [54] Yoon K, Hsiao BS, Chu B (2009) Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation process. Polymer 50: 2893-2899. doi: 10.1016/j.polymer.2009.04.047
    [55] Qian YF, Su Y, Li XQ, et al. (2010) Electrospinning of polymethyl methacrylate nanofibers in different solvents. Irian Polym J 19: 123-129.
    [56] Katsogiannis KAG, Vladisavljevic GT, Georgiadou S (2015) Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur Polym J 69: 284-295. doi: 10.1016/j.eurpolymj.2015.01.028
    [57] Casasola R, Thomas NL, Trybala A, et al. (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55: 4728-4737. doi: 10.1016/j.polymer.2014.06.032
    [58] Kugel RW (1998) Raoult's law: binary liquid-vapor phase diagrams, a simple physical chemistry experiment. J Chem Educ 75: 1125-1129. doi: 10.1021/ed075p1125
    [59] Kolling OW (1993) Dielectric characterization of cosolvents containing N,N-dimethylformamide. Trans Kansas Acad Sci 97: 88.
    [60] Ligneris E, Dumee LF, Al-Attabi R, et al. (2019) Mixed matrix poly(vinyl alcohol)-copper nanofibrous anti-microbial air-microfilters. Membranes 9: 87-100. doi: 10.3390/membranes9070087
    [61] Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115: 3130-3136. doi: 10.1002/app.31396
    [62] Sigma-Aldrich, Poly(bisphenol A-co-epichlorohydrin), 2019. Available at: https://www.sigmaaldrich.com/catalog/product/aldrich/181196.
    [63] Sainsbury T, Gnaniah S, Spencer SJ, et al. (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon 114: 367-376. doi: 10.1016/j.carbon.2016.11.061
    [64] Al-Attabi R, Dumee LF, Schutz JA, et al. (2018) Pore engineering towards highly efficient electrospun nanofibers membranes for ae rosol particle removal. Sci Total Environ 625: 706-715. doi: 10.1016/j.scitotenv.2017.12.342
    [65] Mark JE (2009). Polymer Data Handbook, 2 Eds., New York: Oxford University Press, 190: 1170.
    [66] Kim YJ, Ahn CH, Lee MB, et al. (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127: 137-142. doi: 10.1016/j.matchemphys.2011.01.046
    [67] Yang K, Ma X, Chen F, et al. (2017) Preparation and characterization of gel polymer electrolyte based on electrospun polyhedral oligomeric silsesquioxane-poly(methyl methacrylate)8/polyvinylidene fluoride hybrid nanofiber membranes for lithium-ion batteries. J Solid State Electrochem 22: 581-590
    [68] Lee KH, Kim HY, Ryu YJ, et al. (2003) Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J Polym Sci Pol Phys 41: 1256-1262. doi: 10.1002/polb.10482
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3465) PDF downloads(402) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog