Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Nanomechanical characterization of a metal matrix composite reinforced with carbon nanotubes

1 Facultad de Ingeniería Aeronáutica, Universidad Pontificia Bolivariana, Medellín, Colombia
2 Design of Advanced Composites (DADCOMP), Universidad Nacional de Colombia, Facultad de Minas, Departamento de Materiales y Minerales, Cl 75 No 79A 51, 050032, Medellín, Colombia
3 Departamento de Ciencias Básicas, Universidad Católica Luis Amigó, Medellín, Colombia
4 Grupo GIIEN, Facultad de Ingeniería, Institución Universitaria Pascual Bravo, campus Robledo, Medellín, Colombia

A new technique for the manufacture metal matrix composites has recently been developed. This technique produces a structure of a metallic matrix banded structured-layers of multiwall carbon nanotubes by a diffusive processes. To understand the increase in the volumetric mechanical properties of the composite and the dispersion of the nano-reinforcement, a nanomechanical characterization was performed by nanoindentation and atomic force microscopy. From the mechanical tests performed, a stiffness and elastic modulus maps were made near the reinforced areas, then the dispersion of the nano-reinforcements and the homogeneity of the mechanical properties were accessed. The results showed an increase in the modulus of elasticity of up to 150%; and a good dispersion of the nano-reinforcements in the reinforced zone, which demonstrates the feasibility of the alternative manufacturing process for increasing the mechanical properties of the composite.
  Figure/Table
  Supplementary
  Article Metrics

References

1. González C, Vilatela J, Molina-Aldareguia J, et al. (2017) Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci 89: 194-251.    

2. Parizi MT, Ebrahimi G, Ezatpour H, et al. (2019) The structure effect of carbonaceous reinforcement on the microstructural characterization and mechanical behavior of AZ80 magnesium alloy. J Alloy Compd 809: 151682.    

3. Lakshmanan P, Dharmaselvan S, Paramasivam S, et al. (2019) Tribological properties of B4C nano particulates reinforced copper matrix nanocomposites. Mater Today Proc16: 584-591.

4. Poletti C, Balog M, Schubert T, et al. (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol 68: 2171-2177.    

5. Reddy B, Narayana KB (2018) Fabrication, testing and evaluation of mechanical properties of woven glass fibre composite material. Mater Today Proc 5: 2429-2434.    

6. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378-1385.    

7. Lanfant B, Leconte Y, Debski N, et al. (2019) Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceram Int 45: 2566-2575.    

8. Jayakumar J, Raghunath BK, Rao TH (2013) Enhancing microstructure and mechanical properties of AZ31-MWCNT nanocomposites through mechanical alloying. Adv Mater Sci Eng 2013: 1-6.

9. Cottet A, Dartiailh MC, Desjardins MM, et al. (2017) Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. J Phys-Condens Mat 29: 433002.    

10. Mukhin I, Fadeev I, Zhukov M, et al. (2015) Framed carbon nanostructures: synthesis and applications in functional SPM tips. Ultramicroscopy 148: 151-157.    

11. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14: 1609-1613.    

12. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics, Nature photonics. Nat Photonics 2: 341-350.    

13. Bekyarova E, Ni Y, Malarkey EB, et al. (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1: 3-17.    

14. Zhang Z, Zhang Y, Jiang X, et al. (2019) Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon 155: 71-76.    

15. Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State 40: 38-55.    

16. Sahoo BP, Das D (2019) Critical review on liquid state processing of aluminium based metal matrix nano-composites. Mater Today Proc 19: 493-500.

17. Ren H, Ren X, Xiong H, et al. (2019) Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy. Mater Charact 155: 109813.    

18. Esawi AM, Morsi K, Sayed A, et al. (2009) Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater Sci Eng A-Struct 508: 167-173.    

19. Esawi AM, El Borady MA (2008) Carbon nanotube-reinforced aluminium strips. Compos Sci Technol 68: 486-492.    

20. Li H, Fan J, Geng X, et al. (2014) Alumina powder assisted carbon nanotubes reinforced Mg matrix composites. Mater Design 60: 637-642.    

21. Sun F, Shi C, Rhee KY, et al. (2013) In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloy Compd 551: 496-501.    

22. Jayaraman J, Kuppusamy R, Rao H (2016) Investigation on wear properties of AZ31-MWCNT nanocomposites fabricated through mechanical alloying and powder metallurgy. Sci Eng Compos Mater 23: 61-66.

23. Isaza MCA, Ledezma Sillas JE, Meza JM, et al. (2017) Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. J Compos Mater 51: 1619-1629.    

24. Merino CAI, Sillas JL, Meza J, et al. (2017) Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J Alloy Compd 707: 257-263.    

25. Isaza MCA, Herrera Ramirez JM, Ledezma Sillas JE, et al. (2018) Dispersion and alignment quantification of carbon nanotubes in a polyvinyl alcohol matrix. J Compos Mater 52: 1617-1626.    

26. Zhou W, Bang S, Kurita H, et al. (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96: 919-928.    

27. Ghasemi A, Penther D, Kamrani S (2018) Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling. Mater Charact 142: 137-143.    

28. Salama EI, Abbas A, Esawi AM (2017) Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Composites Part A-Appl S 99: 84-93.    

29. Maja ME, Falodun OE, Obadele BA, et al. (2018) Nanoindentation studies on TiN nanoceramic reinforced Ti-6Al-4V matrix composite. Ceram Int 44: 4419-4425.    

30. Pingkarawat K, Mouritz A (2016) Comparative study of metal and composite z-pins for delamination fracture and fatigue strengthening of composites. Eng Fract Mech 154: 180-190.    

31. Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Cr Phys 4: 993-1008.    

32. Wang D, Russell TP, Nishi T, et al. (2013) Atomic force microscopy nanomechanics visualizes molecular diffusion and microstructure at an interface. ACS Macro Lett 2: 757-760.    

33. Xavior MA, Kumar HP (2017) Processing and characterization techniques of graphene reinforced metal matrix composites (GRMMC); a review. Mater Today Proc 4: 3334-3341.    

34. Radmacher M, Tillmann R, Gaub H (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64: 735-742.    

35. Wang D, Fujinami S, Nakajima K, et al. (2010) True surface topography and nanomechanical mapping measurements on block copolymers with atomic force microscopy. Macromolecules 43: 3169-3172.    

36. Tocha E, Schönherr H, Vancso GJ (2006) Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22: 2340-2350.

37. Scott WW, Bhushan B (2003) Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy 97: 151-169.    

38. Wang D, Russell TP (2017) Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 51: 3-24.

39. Zhou W, Yamamoto G, Fan Y, et al. (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106: 37-47.    

40. Yi C, Chen X, Gou F, et al. (2017) Direct measurements of the mechanical strength of carbon nanotube-aluminum interfaces. Carbon 125: 93-102.    

41. Yi C, Bagchi S, Dmuchowski CM, et al. (2018) Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon 132: 548-555.    

42. Zhang S, Liu H, Gou J, et al. (2019) Quantitative nanomechanical mapping on poly(lactic acid)/poly(-caprolactone)/carbon nanotubes bionanocomposites using atomic force microscopy. Polym Test 77: 105904.    

43. Zhu B, Wang X, Zeng Q, et al. (2019) Enhanced mechanical properties of biodegradable poly (-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay. Compos Commun 13: 70-74.    

44. Chen J, Bull S (2006) On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf Coat Tech 201: 4289-4293.    

45. Chen J (2012) Indentation-based methods to assess fracture toughness for thin coatings. J Phys D-Appl Phys 45: 203001.    

46. Luo Z, Koo JH (2007) Quantifying the dispersion of mixture microstructures. J Microsc 225: 118-125.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved