Research article

Nanomechanical characterization of a metal matrix composite reinforced with carbon nanotubes

  • Received: 27 November 2019 Accepted: 14 January 2020 Published: 16 January 2020
  • A new technique for the manufacture metal matrix composites has recently been developed. This technique produces a structure of a metallic matrix banded structured-layers of multiwall carbon nanotubes by a diffusive processes. To understand the increase in the volumetric mechanical properties of the composite and the dispersion of the nano-reinforcement, a nanomechanical characterization was performed by nanoindentation and atomic force microscopy. From the mechanical tests performed, a stiffness and elastic modulus maps were made near the reinforced areas, then the dispersion of the nano-reinforcements and the homogeneity of the mechanical properties were accessed. The results showed an increase in the modulus of elasticity of up to 150%; and a good dispersion of the nano-reinforcements in the reinforced zone, which demonstrates the feasibility of the alternative manufacturing process for increasing the mechanical properties of the composite.

    Citation: Mateo Duarte, Andrés Benítez, Katiuska Gómez, Benjamín Zuluaga D, Juan Meza, Yamile Cardona-Maya, Juan S. Rudas, César Isaza. Nanomechanical characterization of a metal matrix composite reinforced with carbon nanotubes[J]. AIMS Materials Science, 2020, 7(1): 33-45. doi: 10.3934/matersci.2020.1.33

    Related Papers:

  • A new technique for the manufacture metal matrix composites has recently been developed. This technique produces a structure of a metallic matrix banded structured-layers of multiwall carbon nanotubes by a diffusive processes. To understand the increase in the volumetric mechanical properties of the composite and the dispersion of the nano-reinforcement, a nanomechanical characterization was performed by nanoindentation and atomic force microscopy. From the mechanical tests performed, a stiffness and elastic modulus maps were made near the reinforced areas, then the dispersion of the nano-reinforcements and the homogeneity of the mechanical properties were accessed. The results showed an increase in the modulus of elasticity of up to 150%; and a good dispersion of the nano-reinforcements in the reinforced zone, which demonstrates the feasibility of the alternative manufacturing process for increasing the mechanical properties of the composite.


    加载中


    [1] González C, Vilatela J, Molina-Aldareguia J, et al. (2017) Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci 89: 194-251. doi: 10.1016/j.pmatsci.2017.04.005
    [2] Parizi MT, Ebrahimi G, Ezatpour H, et al. (2019) The structure effect of carbonaceous reinforcement on the microstructural characterization and mechanical behavior of AZ80 magnesium alloy. J Alloy Compd 809: 151682. doi: 10.1016/j.jallcom.2019.151682
    [3] Lakshmanan P, Dharmaselvan S, Paramasivam S, et al. (2019) Tribological properties of B4C nano particulates reinforced copper matrix nanocomposites. Mater Today Proc16: 584-591.
    [4] Poletti C, Balog M, Schubert T, et al. (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol 68: 2171-2177. doi: 10.1016/j.compscitech.2008.03.018
    [5] Reddy B, Narayana KB (2018) Fabrication, testing and evaluation of mechanical properties of woven glass fibre composite material. Mater Today Proc 5: 2429-2434. doi: 10.1016/j.matpr.2017.11.022
    [6] Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378-1385. doi: 10.1016/j.carbon.2005.01.007
    [7] Lanfant B, Leconte Y, Debski N, et al. (2019) Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceram Int 45: 2566-2575. doi: 10.1016/j.ceramint.2018.10.187
    [8] Jayakumar J, Raghunath BK, Rao TH (2013) Enhancing microstructure and mechanical properties of AZ31-MWCNT nanocomposites through mechanical alloying. Adv Mater Sci Eng 2013: 1-6.
    [9] Cottet A, Dartiailh MC, Desjardins MM, et al. (2017) Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. J Phys-Condens Mat 29: 433002. doi: 10.1088/1361-648X/aa7b4d
    [10] Mukhin I, Fadeev I, Zhukov M, et al. (2015) Framed carbon nanostructures: synthesis and applications in functional SPM tips. Ultramicroscopy 148: 151-157. doi: 10.1016/j.ultramic.2014.10.008
    [11] Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14: 1609-1613. doi: 10.1002/elan.200290000
    [12] Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics, Nature photonics. Nat Photonics 2: 341-350. doi: 10.1038/nphoton.2008.94
    [13] Bekyarova E, Ni Y, Malarkey EB, et al. (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1: 3-17. doi: 10.1166/jbn.2005.004
    [14] Zhang Z, Zhang Y, Jiang X, et al. (2019) Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon 155: 71-76. doi: 10.1016/j.carbon.2019.08.018
    [15] Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State 40: 38-55. doi: 10.1080/10408436.2014.929521
    [16] Sahoo BP, Das D (2019) Critical review on liquid state processing of aluminium based metal matrix nano-composites. Mater Today Proc 19: 493-500.
    [17] Ren H, Ren X, Xiong H, et al. (2019) Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy. Mater Charact 155: 109813. doi: 10.1016/j.matchar.2019.109813
    [18] Esawi AM, Morsi K, Sayed A, et al. (2009) Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater Sci Eng A-Struct 508: 167-173. doi: 10.1016/j.msea.2009.01.002
    [19] Esawi AM, El Borady MA (2008) Carbon nanotube-reinforced aluminium strips. Compos Sci Technol 68: 486-492. doi: 10.1016/j.compscitech.2007.06.030
    [20] Li H, Fan J, Geng X, et al. (2014) Alumina powder assisted carbon nanotubes reinforced Mg matrix composites. Mater Design 60: 637-642. doi: 10.1016/j.matdes.2014.04.017
    [21] Sun F, Shi C, Rhee KY, et al. (2013) In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloy Compd 551: 496-501. doi: 10.1016/j.jallcom.2012.11.053
    [22] Jayaraman J, Kuppusamy R, Rao H (2016) Investigation on wear properties of AZ31-MWCNT nanocomposites fabricated through mechanical alloying and powder metallurgy. Sci Eng Compos Mater 23: 61-66.
    [23] Isaza MCA, Ledezma Sillas JE, Meza JM, et al. (2017) Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. J Compos Mater 51: 1619-1629. doi: 10.1177/0021998316658784
    [24] Merino CAI, Sillas JL, Meza J, et al. (2017) Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J Alloy Compd 707: 257-263. doi: 10.1016/j.jallcom.2016.11.348
    [25] Isaza MCA, Herrera Ramirez JM, Ledezma Sillas JE, et al. (2018) Dispersion and alignment quantification of carbon nanotubes in a polyvinyl alcohol matrix. J Compos Mater 52: 1617-1626. doi: 10.1177/0021998317731151
    [26] Zhou W, Bang S, Kurita H, et al. (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96: 919-928. doi: 10.1016/j.carbon.2015.10.016
    [27] Ghasemi A, Penther D, Kamrani S (2018) Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling. Mater Charact 142: 137-143. doi: 10.1016/j.matchar.2018.05.023
    [28] Salama EI, Abbas A, Esawi AM (2017) Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Composites Part A-Appl S 99: 84-93. doi: 10.1016/j.compositesa.2017.04.002
    [29] Maja ME, Falodun OE, Obadele BA, et al. (2018) Nanoindentation studies on TiN nanoceramic reinforced Ti-6Al-4V matrix composite. Ceram Int 44: 4419-4425. doi: 10.1016/j.ceramint.2017.12.042
    [30] Pingkarawat K, Mouritz A (2016) Comparative study of metal and composite z-pins for delamination fracture and fatigue strengthening of composites. Eng Fract Mech 154: 180-190. doi: 10.1016/j.engfracmech.2016.01.003
    [31] Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Cr Phys 4: 993-1008. doi: 10.1016/j.crhy.2003.08.001
    [32] Wang D, Russell TP, Nishi T, et al. (2013) Atomic force microscopy nanomechanics visualizes molecular diffusion and microstructure at an interface. ACS Macro Lett 2: 757-760. doi: 10.1021/mz400281f
    [33] Xavior MA, Kumar HP (2017) Processing and characterization techniques of graphene reinforced metal matrix composites (GRMMC); a review. Mater Today Proc 4: 3334-3341. doi: 10.1016/j.matpr.2017.02.220
    [34] Radmacher M, Tillmann R, Gaub H (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64: 735-742. doi: 10.1016/S0006-3495(93)81433-4
    [35] Wang D, Fujinami S, Nakajima K, et al. (2010) True surface topography and nanomechanical mapping measurements on block copolymers with atomic force microscopy. Macromolecules 43: 3169-3172. doi: 10.1021/ma9028695
    [36] Tocha E, Schönherr H, Vancso GJ (2006) Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22: 2340-2350.
    [37] Scott WW, Bhushan B (2003) Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy 97: 151-169. doi: 10.1016/S0304-3991(03)00040-8
    [38] Wang D, Russell TP (2017) Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 51: 3-24.
    [39] Zhou W, Yamamoto G, Fan Y, et al. (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106: 37-47. doi: 10.1016/j.carbon.2016.05.015
    [40] Yi C, Chen X, Gou F, et al. (2017) Direct measurements of the mechanical strength of carbon nanotube-aluminum interfaces. Carbon 125: 93-102. doi: 10.1016/j.carbon.2017.09.020
    [41] Yi C, Bagchi S, Dmuchowski CM, et al. (2018) Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon 132: 548-555. doi: 10.1016/j.carbon.2018.02.069
    [42] Zhang S, Liu H, Gou J, et al. (2019) Quantitative nanomechanical mapping on poly(lactic acid)/poly(-caprolactone)/carbon nanotubes bionanocomposites using atomic force microscopy. Polym Test 77: 105904. doi: 10.1016/j.polymertesting.2019.105904
    [43] Zhu B, Wang X, Zeng Q, et al. (2019) Enhanced mechanical properties of biodegradable poly (-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay. Compos Commun 13: 70-74. doi: 10.1016/j.coco.2019.03.002
    [44] Chen J, Bull S (2006) On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf Coat Tech 201: 4289-4293. doi: 10.1016/j.surfcoat.2006.08.099
    [45] Chen J (2012) Indentation-based methods to assess fracture toughness for thin coatings. J Phys D-Appl Phys 45: 203001. doi: 10.1088/0022-3727/45/20/203001
    [46] Luo Z, Koo JH (2007) Quantifying the dispersion of mixture microstructures. J Microsc 225: 118-125. doi: 10.1111/j.1365-2818.2007.01722.x
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3878) PDF downloads(651) Cited by(6)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog