Mini review Topical Sections

Effects of nanomaterials and particles on mechanical properties and fracture toughness of composite materials: a short review

  • Received: 03 October 2019 Accepted: 01 December 2019 Published: 03 December 2019
  • The positive influence of nanomaterials and particles on the behavior of composite material structures have been studied which include the material structural characteristics, manufacturing process, compatibility with the other phases, size, dispersion process, adhesion, etc. The review on the choice of nanomaterials for a specific application and their effects on the bulk materials related to loadings have been overlooked. Thus, this paper reviewed the effects of nanomaterials based on loading conditions, sizes adhesions for the specific category of fillers. It also showed the appropriate filler amount for the enhancement of mechanical properties (i.e. stiffness and strength) and fracture toughness for both interlaminar and intralaminar perspectives. Furthermore, the effects of soft, hard and hybrid fillers were organized to put in evidence how some filler have magnificent effects for specific property enhancements. Moreover, the optimum nanomaterials application related to loading conditions were articulated in order to give a quick suggestion to the structural design engineers and researchers. Finally, the review gives a hint on how the addition of nanofillers and particle affects damage initiations and behavior of fiber reinforced plastic composites.

    Citation: Mulugeta H. Woldemariam, Giovanni Belingardi, Ermias G. Koricho, Daniel T. Reda. Effects of nanomaterials and particles on mechanical properties and fracture toughness of composite materials: a short review[J]. AIMS Materials Science, 2019, 6(6): 1191-1212. doi: 10.3934/matersci.2019.6.1191

    Related Papers:

  • The positive influence of nanomaterials and particles on the behavior of composite material structures have been studied which include the material structural characteristics, manufacturing process, compatibility with the other phases, size, dispersion process, adhesion, etc. The review on the choice of nanomaterials for a specific application and their effects on the bulk materials related to loadings have been overlooked. Thus, this paper reviewed the effects of nanomaterials based on loading conditions, sizes adhesions for the specific category of fillers. It also showed the appropriate filler amount for the enhancement of mechanical properties (i.e. stiffness and strength) and fracture toughness for both interlaminar and intralaminar perspectives. Furthermore, the effects of soft, hard and hybrid fillers were organized to put in evidence how some filler have magnificent effects for specific property enhancements. Moreover, the optimum nanomaterials application related to loading conditions were articulated in order to give a quick suggestion to the structural design engineers and researchers. Finally, the review gives a hint on how the addition of nanofillers and particle affects damage initiations and behavior of fiber reinforced plastic composites.


    加载中


    [1] Wimmer G, Schuecker C, Pettermann HE (2009) Numerical simulation of delamination in laminated composite components-A combination of a strength criterion and fracture mechanics. Compos Part B-Eng 40: 158-165. doi: 10.1016/j.compositesb.2008.10.006
    [2] Maillet I, Michel L, Rico G, et al. (2013) A new test methodology based on structural resonance for mode I fatigue delamination growth in an unidirectional composite. Compos Struct 97: 353-362. doi: 10.1016/j.compstruct.2012.10.024
    [3] Chen J, Fox D (2012) Numerical investigation into multi-delamination failure of composite T-piece specimens under mixed mode loading using a modified cohesive model. Compos Struct 94: 2010-2016. doi: 10.1016/j.compstruct.2011.12.030
    [4] Liu HY, Wang GT, Mai YW, et al. (2011) On fracture toughness of nano-particle modified epoxy. Compos Part B-Eng 42: 2170-2175. doi: 10.1016/j.compositesb.2011.05.014
    [5] Peng L, Xu J, Zhang J, et al. (2012) Mixed mode delamination growth of multidirectional composite laminates under fatigue loading. Eng Fract Mech 96: 676-686. doi: 10.1016/j.engfracmech.2012.09.033
    [6] Albedah A, Benyahia F, Dinar H, et al. (2013) Analytical formulation of the stress intensity factor for crack emanating from central holes and repaired with bonded composite patch in aircraft structures. Compos Part B-Eng 45: 852-857. doi: 10.1016/j.compositesb.2012.08.019
    [7] Wetzel B, Rosso P, Haupert F, et al. (2006) Epoxy nanocomposites-fracture and toughening mechanisms. Eng Fract Mech 73: 2375-2398. doi: 10.1016/j.engfracmech.2006.05.018
    [8] Koricho EG, Khomenko A, Haq M, et al. (2015) Effect of hybrid (micro- and nano-) fillers on impact response of GFRP composite. Compos Struct 134: 789-798. doi: 10.1016/j.compstruct.2015.08.106
    [9] Hamitouche L, Tarfaoui M, Vautrin A (2008) An interface debonding law subject to viscous regularization for avoiding instability: application to the delamination problems. Eng Fract Mech 75: 3084-3100. doi: 10.1016/j.engfracmech.2007.12.014
    [10] Hawkins Jr DA, Haque A (2014) Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites. Procedia Eng 90: 176-181. doi: 10.1016/j.proeng.2014.11.833
    [11] Tsai JL, Huang BH, Cheng YL (2011) Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Eng 14: 1982-1987. doi: 10.1016/j.proeng.2011.07.249
    [12] Tang Y, Ye L, Zhang Z, et al. (2013) Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles-A review. Compos Sci Technol 86: 26-37. doi: 10.1016/j.compscitech.2013.06.021
    [13] Zeng Y, Liu HY, Mai YW, et al. (2012) Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos Part B-Eng 43: 90-94. doi: 10.1016/j.compositesb.2011.04.036
    [14] Short GJ, Guild FJ, Pavier MJ (2001) The effect of delamination geometry on the compressive failure of composite laminates. Compos Sci Technol 61: 2075-2086. doi: 10.1016/S0266-3538(01)00134-8
    [15] Chandrasekaran S, Sato N, Tölle F, et al. (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97: 90-99. doi: 10.1016/j.compscitech.2014.03.014
    [16] Achaby ME, Ennajih H, Arrakhiz FZ, et al. (2013) Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites. Compos Part B-Eng 51: 310-317. doi: 10.1016/j.compositesb.2013.03.009
    [17] Valentini L, Bon SB, Lopez-Manchado MA, et al. (2016) Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos Sci Technol 128: 123-130. doi: 10.1016/j.compscitech.2016.03.024
    [18] Fu SY, Feng XQ, Lauke B, et al. (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B-Eng 39: 933-961. doi: 10.1016/j.compositesb.2008.01.002
    [19] Dittrich B, Wartig KA, Hofmann D, et al. (2013) Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98: 1495-1505. doi: 10.1016/j.polymdegradstab.2013.04.009
    [20] Hakamy A, Shaikh FUA, Low IM (2015) Effect of calcined nanoclay on microstructural and mechanical properties of chemically treated hemp fabric-reinforced cement nanocomposites. Constr Build Mater 95: 882-891. doi: 10.1016/j.conbuildmat.2015.07.145
    [21] John B, CP Nair CPR, Ninan KN (2010) Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyan ate ester syntactic foams. Mat Sci Eng A-Struct 527: 5435-5443. doi: 10.1016/j.msea.2010.05.016
    [22] Chang H, JiaL V, Zhang H, et al. (2017) Photo responsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. Biosens Bioelectron 87: 579-586. doi: 10.1016/j.bios.2016.09.002
    [23] Santos CSC, Gabriel B, Blanchy M, et al. (2015) Industrial applications of nanoparticles-a prospective overview. Mater Today Proc 2: 456-465. doi: 10.1016/j.matpr.2015.04.056
    [24] Liang YL, Pearson RA (2010) The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs). Polymer 51: 4880-4890. doi: 10.1016/j.polymer.2010.08.052
    [25] Cao Q, Li J, Wang E (2019) Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 132: 333-342. doi: 10.1016/j.bios.2019.01.046
    [26] Liu Y, Zhou J, Shen T (2013) Effect of nano-metal particles on the fracture toughness of metal-ceramic composite. Mater Design 45: 67-71. doi: 10.1016/j.matdes.2012.08.065
    [27] Tishkevich DI, Vorobjova AI, Shimanovich DL, et al. (2019) Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. J Alloy Compd 804: 139-146. doi: 10.1016/j.jallcom.2019.07.001
    [28] Tishkevich DI, Grabchikov SS, Lastovskii SB, et al. (2019) Function composites materials for shielding applications: correlation between phase separation and attenuation properties. J Alloy Compd 771: 238-245. doi: 10.1016/j.jallcom.2018.08.209
    [29] Tishkevich DI, Korolkov IV, Kozlovskiy AL, et al. (2019) Immobilization of boron-rich compound on Fe3O4 nanoparticles: stability and cytotoxicity. J Alloy Compd 797: 573-581. doi: 10.1016/j.jallcom.2019.05.075
    [30] Zappalorto M, Salviato M, Quaresimin M (2013) Mixed mode (I + II) fracture toughness of polymer nanoclay nanocomposites. Eng Fract Mech 111: 50-64. doi: 10.1016/j.engfracmech.2013.09.006
    [31] Chan M, Lau K, Wong T, et al. (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Compos Part B-Eng 42: 1708-1712. doi: 10.1016/j.compositesb.2011.03.011
    [32] Binu PP, George KE, Vinodkumar MN (2016) Effect of nanoclay, Cloisite15A on the mechanical properties and thermal behavior of glass fiber reinforced polyester. Procedia Manuf 25: 846-853.
    [33] Domun N, Hadavinia H, Zhang T, et al. (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status. Nanoscale 7: 10294-10329. doi: 10.1039/C5NR01354B
    [34] Asadi J, Ebrahimi NG, Razzaghi-Kashani M (2015) Self-healing property of epoxy/nanoclay nanocomposite using poly(ethylene-co-methacrylic acid) agent. Compos Part A-Appl S 68: 56-61. doi: 10.1016/j.compositesa.2014.09.017
    [35] Quang TN, Donald GB (2007) An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer 48: 6923-6933. doi: 10.1016/j.polymer.2007.09.015
    [36] El-Sheikhy R, Al-Shamrani M (2017) Interfacial bond assessment of clay-polyolefin nanocomposites CPNC on view of mechanical and fracture properties. Adv Powder Technol 28: 983-992. doi: 10.1016/j.apt.2017.01.002
    [37] Azeez AA, Rhee KY, SooJin Park SJ, et al. (2013) Epoxy clay nanocomposites-processing, properties and applications: A review. Compos Part B-Eng 45: 308-320. doi: 10.1016/j.compositesb.2012.04.012
    [38] Assaedi H, Shaikh FUA, Low IM (2016) Effect of nanoclayon mechanical and thermal properties of geopolymer. J Asian Ceram Soc 4: 19-28. doi: 10.1016/j.jascer.2015.10.004
    [39] Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos Part A-Appl S 63: 149-158. doi: 10.1016/j.compositesa.2014.04.008
    [40] Avila AF, David Morais DTS (2009) Modeling nanoclay effects into laminates failure strength and porosity. Compos Struct 87: 55-62. doi: 10.1016/j.compstruct.2007.12.009
    [41] Maharsia RR, Jerro HD (2007) Enhancing tensile strength and toughness in syntactic foams through nanoclay reinforcement. Mat Sci Eng A-Struct 454: 416-422.
    [42] Withers GJ, Yu Y, Khabashesku VN, Cercone L, et al. (2015) Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organo modified nanoclays. Compos Part B-Eng 72: 175-182.
    [43] Sharma B, Mahajan S, Chhibber R, et al. (2012) Glass fiber reinforced polymer-clay nanocomposites: processing, structure and hygrothermal effects on mechanical properties. Procedia Manuf 4: 39-46.
    [44] Wang L, Wang K, Chen L, et al. (2006) Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Compos Part A-Appl S 37: 1890-1896. doi: 10.1016/j.compositesa.2005.12.020
    [45] Ravandi M, Teo WS, Tran LQN, et al. (2016) The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates. Mater Design 109: 659-669. doi: 10.1016/j.matdes.2016.07.093
    [46] Giannopoulos GI (2019) Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-12. Compos Part B-Eng 161: 455-463. doi: 10.1016/j.compositesb.2018.12.110
    [47] Giannopoulos GI (2019) Introducing bone-shaped carbon nanotubes to reinforce polymer nanocomposites: A molecular dynamics investigation. Mater Today Chem 20: 100570.
    [48] Giannopoulos GI, Georgantzinos SK, Katsareas DE, et al. (2010) Numerical prediction of young's and shear moduli of carbon nanotube composites incorporating nanoscale and interfacial effects. CMES-Comp Model Eng 56: 231-247.
    [49] Shuvo SN, Shorowordi KMK (2015) Processing and mechanical mharacterization of graded and non-graded nanoclay composites. Procedia Eng 105: 928-932. doi: 10.1016/j.proeng.2015.05.117
    [50] Ghadami F, Dadfar MR, Kazazi M (2016) Hot-cured epoxy-nanoparticulate-filled nanocomposites: fracture toughness behavior. Eng Fract Mech 162: 193-200. doi: 10.1016/j.engfracmech.2016.05.016
    [51] Phong NT, Gabr MH, Okubo K, et al. (2013) Improvement in the mechanical performances of carbon fiber/epoxy composite with addition of nano-(Polyvinyl alcohol) fibers. Compos Struct 99: 380-387. doi: 10.1016/j.compstruct.2012.12.018
    [52] Gantenbein D, Schoelkopf J, Peter G, et al. (2011) Determining the size distribution-defined aspect ratio of platy particles. Appl Clay Sci 53: 544-552. doi: 10.1016/j.clay.2011.04.020
    [53] Iman M, Maji TK (2012) Effect of cross linker and nanoclay on starch and jute fabric based green nanocomposites. Carbohyd Polym 89: 290-297. doi: 10.1016/j.carbpol.2012.03.012
    [54] Matusik J, Stodolak E, Bahranowski K (2011) Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Appl Clay Sci 51: 102-109. doi: 10.1016/j.clay.2010.11.010
    [55] Awad WH, Beyer G, Benderly D, et al. (2009) Material properties of nanoclay PVC composites. Polymer 50: 1857-1867. doi: 10.1016/j.polymer.2009.02.007
    [56] Kitey R, Tippur HV (2005) Role of particle size and filler-matrix adhesion on dynamic fracture of glass-filled epoxy. I. Macro measurements. Acta Mater 53: 1153-1165.
    [57] Zhao Y, Chen Z, Liu Y, et al. (2013) Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nit rile-butadiene nanorubber. Compos Part A-Appl S 55: 178-187. doi: 10.1016/j.compositesa.2013.09.005
    [58] Sun XC, Wisnom MR, Hallett SR (2016) Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: part 2-Numerical simulation. Compos Struct 136: 727-742. doi: 10.1016/j.compstruct.2015.09.062
    [59] Wood MDK, Sun X, Tong L, et al. (2007) The effect of stitch distribution on Mode I delamination toughness of stitched laminated composites-experimental results and FEA simulation. Compos Sci Technol 67: 1058-1072. doi: 10.1016/j.compscitech.2006.06.002
    [60] Mouritza AP, Leongb KH, Herszberg I (1997) A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Compos Part A-Appl S 28: 979-991. doi: 10.1016/S1359-835X(97)00057-2
    [61] Dransfield KA, Jainb LK, Mai Y (1998) On the effects of stitching in CFRPs-I. mode I delamination toughness. Compos Sci Technol 58: 815-827.
    [62] Jain LK, Dransfieldb KA, Ma Y (1998) On the effects of stitching in CFRPs-II. mode II delamination toughness. Compos Sci Technol 58: 829-837.
    [63] Sun X, Tong L, Wood MDK, Mai Y (2004) Effect of stitch distribution on mode I delamination toughness of laminated DCB specimens. Compos Sci Technol 64: 967-981. doi: 10.1016/j.compscitech.2003.07.004
    [64] Kim BC, Park SW, Lee DG (2008) Fracture toughness of the nano-particle reinforced epoxy composite. Compos Struct 86: 69-77. doi: 10.1016/j.compstruct.2008.03.005
    [65] Wang M, Ma L, Shi L, et al. (2019) Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites. Compos Sci Technol 182: 107751. doi: 10.1016/j.compscitech.2019.107751
    [66] Kelkar AD, Mohan R, Bolick R, et al. (2010) Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Mat Sci Eng B-Solid 168: 85-89. doi: 10.1016/j.mseb.2010.01.015
    [67] Raja RS, Manisekar K (2016) Experimental and statistical analysis on mechanical properties of nanoflyash impregnated GFRP composites using central composite design method. Mater Design 89: 884-892. doi: 10.1016/j.matdes.2015.10.043
    [68] Moustafa H, Darwish NA (2015) Effect of different types and loadings of modified nanoclay on mechanical properties and adhesion strength of EPDM-g-MAH/nylon 66 systems. Int J Adhes Adhes 61: 15-22. doi: 10.1016/j.ijadhadh.2015.05.002
    [69] Sellappan P, Guin J, Rocherulle J, et al. (2013) Influence of diamond particles content on the critical load for crack initiation and fracture toughness of SiOC glass-diamond composites. J Eur Ceram Soc 33: 847-858. doi: 10.1016/j.jeurceramsoc.2012.10.012
    [70] Quaresimin M, Salviato M, Zappalorto M (2012) Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Eng Fract Mech 81: 80-93. doi: 10.1016/j.engfracmech.2011.10.004
    [71] Zeinedini A, Shokrieh MM, Ebrahimi A (2018) The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theor Appl Fract Mec 94: 84-94. doi: 10.1016/j.tafmec.2018.01.009
    [72] Maghsoudlou MA, Isfahan RB, Saber-Samandari S, et al. (2019) Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Compos Part B-Eng 175: 107119. doi: 10.1016/j.compositesb.2019.107119
    [73] Zare Y, Rhee KP, Hui D (2017) Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos Part B-Eng 122: 41-46 doi: 10.1016/j.compositesb.2017.04.008
    [74] Rafiq A, Merah N, Boukhili R, et al. (2017) Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite. Polym Test 57: 1-11. doi: 10.1016/j.polymertesting.2016.11.005
    [75] Domun N, Kaboglu C, Keith R (2019) Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices. Compos Part B-Eng 167: 497-506. doi: 10.1016/j.compositesb.2019.03.024
    [76] Dorigato A, Morandi S, Pegoretti A (12) Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. J Compos Mater 46:1439-1451.
    [77] Gelineau P Weigand S, Cauvin L, et al (2018) Compatibility effects of modified montmorillonite on elastic and viscoelastic properties of nano-reinforced poly(lactic acid): experimental and modeling study. Polym Test 70: 441-448. doi: 10.1016/j.polymertesting.2018.06.020
    [78] Mu X, Zhan J, Wang J, et al. (2019) A novel and efficient strategy to exfoliation of covalent organic frameworks and a significant advantage of covalent organic frameworks nanosheets as polymer nano-enhancer: high interface compatibility. J Colloid Interf Sci 539: 609-618. doi: 10.1016/j.jcis.2018.12.103
    [79] Bandyopadhyay J, Ray SS, Salehiyan R, et al. (2017) Effect of the mode of nanoclay inclusion on morphology development and rheological properties of nylon6/ethylevinyl-alcohol blend composites. Polymer 126: 96-108. doi: 10.1016/j.polymer.2017.08.032
    [80] Vo VS, Nguyen V, Mahouche-Chergui S, et al. (2018) Estimation of effective elastic properties of polymer/clay nanocomposites: A parametric study. Compos Part B-Eng 152: 139-150.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4849) PDF downloads(1431) Cited by(21)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog